|   | 
Details
   web
Records
Author Zorin, M.; Lindgren, M.; Danerud, M.; Karasik, B.; Winkler, D.; Gol'tsman, G.; Gershenzon, E.
Title Nonequilibrium and bolometric responses of YBaCuO thin films to high-frequency modulated laser radiation Type Journal Article
Year 1995 Publication J. Supercond. Abbreviated Journal J. Supercond.
Volume 8 Issue (up) 1 Pages 11-15
Keywords YBCO HTS HEB
Abstract Picosecond nonequilibrium and slow bolometric responses to infrared radiation from a patterned high-T c superconducting (HTS) film in resistive and normal states deposited onto LaAlO3, NdGaO3, and MgO substrates were investigated using both pulse and modulation techniques. The response time of 35 ps to a laser pulse of 17 ps FWHM has been observed. The intrinsic response time of the fast process is expected to be about a few picoseconds. The modulation technique, being free from the disadvantages of pulse methods (poor sensitivity, limited dynamic range), makes the detailed study of a number of relaxation processes possible. Besides the nonequilibrium response, two kinds of bolometric processes, namely phonon transport through the film-substrate interface and phonon thermal diffusion in a substrate, manifest themselves in certain frequency dependences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0896-1107 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1630
Permanent link to this record
 

 
Author Semenov, A. D.; Goghidze, I. G.; Gol’tsman, G. N.; Sergeev, A. V.; Aksaev, E. E.; Gershenzon, E. M.
Title Non-equilibrium quasiparticle response to radiation and bolometric effect in YBaCuO films Type Journal Article
Year 1993 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 3 Issue (up) 1 Pages 2132-2135
Keywords YBCO HTS HEB detectors
Abstract The voltage photoresponse of structured current biased YBCO films on different substrates to 20-ps laser pulses of 0.63- mu m and 1.54- mu m wavelengths and to continuously modulated radiation of 2-mm wavelength is measured to temperatures around Tc. Fast picosecond decay of the response to pulsed radiation is followed by slow exponential relaxation with a nanosecond characteristic time depending on the substrate material and film dimensions. The slow component does not depend on wavelength and is attributed to the bolometric effect, while the magnitude of the fast component associated with nonequilibrium response rises with wavelength. More than an order-of-magnitude increase of the nonequilibrium response is seen from near-infrared to millimeter-wave range. This dependence plausibly reflects the low efficiency of multiplication of photoexcited electrons in YBaCuO compared to conventional superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1659
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K.
Title Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 10 Issue (up) 1 Pages 16819
Keywords VN HEB
Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.
Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33033360; PMCID:PMC7546726 Approved no
Call Number Serial 1797
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.
Title Low noise hot-electron bolometer mixers for terahertz frequencies Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 151 Issue (up) 1-2 Pages 575-579
Keywords HEB, mixer, gain bandwidth, MgB2
Abstract Hot-electron bolometer (HEB) mixers are used in many low noise heterodyne radio astronomical receivers. Their noise temperature is at the level of 10–15 times the quantum limit. However, their gain bandwidth is a serious limiting factor. Here we review the state of the art of the HEB mixers gain bandwidth for different materials and substrates. We compare the gain bandwidth of HEB mixers made on bulk substrates and thin membranes. Finally, results for MgB2 thin films for broadband HEB mixers are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 553
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Elantiev, A. I.; Karasik, B. S.; Semenov, A. D.
Title Millimeter and submillimeter wave range mixer based on electronic heating of superconducting films in the resistive state Type Journal Article
Year 1990 Publication Sov. Supercond. Abbreviated Journal Sov. Supercond.
Volume 3 Issue (up) 10 Pages 1582-1597
Keywords HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 240
Permanent link to this record