|   | 
Details
   web
Records
Author Schuck, C.; Pernice, W. H. P.; Minaeva, O.; Li, Mo; Gol'tsman, G.; Sergienko, A. V.; Tang, H. X.
Title Matrix of integrated superconducting single-photon detectors with high timing resolution Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue (down) 3 Pages 2201007-2201007
Keywords NbN SSPD, SNSPD, array, matrix
Abstract We demonstrate a large grid of individually addressable superconducting single photon detectors on a single chip. Each detector element is fully integrated into an independent waveguide circuit with custom functionality at telecom wavelengths. High device density is achieved by fabricating the nanowire detectors in traveling wave geometry directly on top of silicon-on-insulator waveguides. Our superconducting single photon detector matrix includes detector designs optimized for high detection efficiency, low dark count rate, and high timing accuracy. As an example, we exploit the high timing resolution of a particularly short nanowire design to resolve individual photon round-trips in a cavity ring-down measurement of a silicon ring resonator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1373
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G.
Title Probing the stability of HEB mixers with microwave injection Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue (down) 3 Pages 2300404 (1 to 4)
Keywords NbN HEB mixer, stability, Allan-variance
Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1355
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K.
Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B
Volume 36 Issue (down) 3 Pages B20
Keywords NbN PNR SSPD, SNSPD
Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0740-3224 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1225
Permanent link to this record
 

 
Author Smirnov, K.; Divochiy, A.; Vakhtomin, Y.; Morozov, P.; Zolotov, P.; Antipov, A.; Seleznev, V.
Title NbN single-photon detectors with saturated dependence of quantum efficiency Type Journal Article
Year 2018 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 31 Issue (down) 3 Pages 035011 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of Rs300/Rs20. The decreasing of Rs300/Rs20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at Ib/Ic ~ 0.8 and wavelength 1310 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1232
Permanent link to this record
 

 
Author Korneeva, Y.; Sidorova, M.; Semenov, A.; Krasnosvobodtsev, S.; Mitsen, K.; Korneev, A.; Chulkova, G.; Goltsman, G.
Title Comparison of hot-spot formation in NbC and NbN single-photon detectors Type Journal Article
Year 2016 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 26 Issue (down) 3 Pages 1-4
Keywords NbC, NbN SSPD, SNSPD
Abstract We report an experimental investigation of the hot-spot evolution in superconducting single-photon detectors made of disordered superconducting materials with different diffusivity and energy downconversion time values, i.e., 33-nm-thick NbN and 23-nm-thick NbC films. We have demonstrated that, in NbC film, only 405-nm photons produce sufficiently large hot spot to trigger a single-photon response. The dependence of detection efficiency on bias current for 405-nm photons in NbC is similar to that for 3400-nm photons in NbN. In NbC, large diffusivity and downconversion time result in 1-D critical current suppression profile compared with the usual 2-D profile in NbN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1348
Permanent link to this record