|   | 
Details
   web
Records
Author Wu, Ming C.
Title Optoelectronic tweezers Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon
Volume 5 Issue (up) 6 Pages 322-324
Keywords fromIPMRAS
Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 775
Permanent link to this record
 

 
Author Fazal, Furqan M.; Block, Steven M.
Title Optical tweezers study life under tension Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue (up) 6 Pages 318-321
Keywords fromIPMRAS
Abstract Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 776
Permanent link to this record
 

 
Author Bialczak, R. C.; Ansmann, M.; Hofheinz, M.; Lucero, E.; Neeley, M.; O'Connell, A. D.; Sank, D.; Wang, H.; Wenner, J.; Steffen, M.; Cleland, A. N.; Martinis, J. M.
Title Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue (up) 6 Pages 409-413
Keywords fromIPMRAS
Abstract Quantum gates must perform reliably when operating on standard input basis states and on complex superpositions thereof. Experiments using superconducting qubits have validated truth tables for particular implementations of, for example, the controlled-NOT gate, but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) to fully characterize the performance of a universal entangling gate between two superconducting qubits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction and ideally simultaneous single-shot measurement of output states. In recent work, it has been proposed to use QPT to probe noise properties and time dynamics of qubit systems and to apply techniques from control theory to create scalable qubit benchmarking protocols. We use QPT to measure the fidelity and noise properties of an entangling gate. In addition to demonstrating a promising fidelity, our entangling gate has an on-to-off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as QPT has previously been demonstrated only with single solid-state qubits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 803
Permanent link to this record
 

 
Author Knee, George C.; Simmons, Stephanie; Gauger, Erik M.; Morton, John J. L.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei M.; Thewalt, Mike L. W.; Briggs, G. Andrew D.; Benjamin, Simon C.
Title Violation of a Leggett–Garg inequality with ideal non-invasive measurements Type Journal Article
Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 3 Issue (up) 606 Pages 6
Keywords fromIPMRAS
Abstract The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 767
Permanent link to this record
 

 
Author Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G.
Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 3 Issue (up) 625 Pages 6
Keywords fromIPMRAS
Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 768
Permanent link to this record