toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Taylor, F.W. url  doi
openurl 
  Title Atmospheric physics: Natural lasers on Venus and Mars Type Journal Article
  Year 1983 Publication Nature Abbreviated Journal Nature  
  Volume 306 Issue (up) 5944 Pages 640-640  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 457  
Permanent link to this record
 

 
Author Konstantatos, Gerasimos; Sargent, Edward H. openurl 
  Title Nanostructured materials for photon detection Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue (up) 6 Pages 391–400  
  Keywords  
  Abstract The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 684  
Permanent link to this record
 

 
Author Wu, Ming C. openurl 
  Title Optoelectronic tweezers Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 5 Issue (up) 6 Pages 322-324  
  Keywords fromIPMRAS  
  Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 775  
Permanent link to this record
 

 
Author Fazal, Furqan M.; Block, Steven M. openurl 
  Title Optical tweezers study life under tension Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue (up) 6 Pages 318-321  
  Keywords fromIPMRAS  
  Abstract Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 776  
Permanent link to this record
 

 
Author Bialczak, R. C.; Ansmann, M.; Hofheinz, M.; Lucero, E.; Neeley, M.; O'Connell, A. D.; Sank, D.; Wang, H.; Wenner, J.; Steffen, M.; Cleland, A. N.; Martinis, J. M. openurl 
  Title Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue (up) 6 Pages 409-413  
  Keywords fromIPMRAS  
  Abstract Quantum gates must perform reliably when operating on standard input basis states and on complex superpositions thereof. Experiments using superconducting qubits have validated truth tables for particular implementations of, for example, the controlled-NOT gate, but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) to fully characterize the performance of a universal entangling gate between two superconducting qubits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction and ideally simultaneous single-shot measurement of output states. In recent work, it has been proposed to use QPT to probe noise properties and time dynamics of qubit systems and to apply techniques from control theory to create scalable qubit benchmarking protocols. We use QPT to measure the fidelity and noise properties of an entangling gate. In addition to demonstrating a promising fidelity, our entangling gate has an on-to-off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as QPT has previously been demonstrated only with single solid-state qubits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 803  
Permanent link to this record
 

 
Author Knee, George C.; Simmons, Stephanie; Gauger, Erik M.; Morton, John J. L.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei M.; Thewalt, Mike L. W.; Briggs, G. Andrew D.; Benjamin, Simon C. openurl 
  Title Violation of a Leggett–Garg inequality with ideal non-invasive measurements Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue (up) 606 Pages 6  
  Keywords fromIPMRAS  
  Abstract The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 767  
Permanent link to this record
 

 
Author Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G. openurl 
  Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue (up) 625 Pages 6  
  Keywords fromIPMRAS  
  Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 768  
Permanent link to this record
 

 
Author Ghali, Mohsen; Ohtani1, Keita; Ohno, Yuzo; Ohno, Hideo openurl 
  Title Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue (up) 661 Pages 6  
  Keywords fromIPMRAS  
  Abstract Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 769  
Permanent link to this record
 

 
Author Freer, Erik M.; Grachev, Oleg; Duan, Xiangfeng; Martin, Samuel; Stumbo, David P. openurl 
  Title High-yield self-limiting single-nanowire assembly with dielectrophoresis Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue (up) 7 Pages 525–530  
  Keywords  
  Abstract Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 683  
Permanent link to this record
 

 
Author Schwarz, Brent openurl 
  Title Lidar: Mapping the world in 3D Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 4 Issue (up) 7 Pages 429-430  
  Keywords LIDAR  
  Abstract A high-definition LIDAR system with a rotating sensor head containing 64 semiconductor lasers allows the efficient generation of 3D environment maps at unprecedented levels of detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 696  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: