|   | 
Details
   web
Records
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N.
Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.
Volume 44 Issue 3 Pages 221-225
Keywords (down) WSi SSPD, SNSPD
Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-777X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1310
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.
Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 97 Issue 18 Pages 184512 (1 to 13)
Keywords (down) WSi films, diffusion constant, SSPD, SNSPD
Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1305
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneev, A. A.; Chulkova, G. M.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Goltsman, G. N.
Title Non-bolometric bottleneck in electron-phonon relaxation in ultra-thin WSi film Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords (down) WSi films, diffusion constant, SSPD, SNSPD
Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in tau{e-ph} = 140-190 ps at TC = 3.4 K, supporting the results of earlier measurements by independent techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1305 Approved no
Call Number Serial 1341
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Korneev, A.; Chulkova, G.; Korneeva, Y.; Mikhailov, M.; Devizenko, A.; Kozorezov, A.; Goltsman, G.
Title Electron-phonon relaxation time in ultrathin tungsten silicon film Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords (down) WSi film
Abstract Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1341 Approved no
Call Number Serial 1340
Permanent link to this record
 

 
Author Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Quantum photonic integrated circuits with waveguide integrated superconducting nanowire single-photon detectors Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 02004 (1 to 2)
Keywords (down) waveguide SSPD, SNSPD
Abstract We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1320
Permanent link to this record
 

 
Author Золотов, Ф. И.; Дивочий, А. В.; Вахтомин, Ю. Б.; Пентин, И. В.; Морозов, П. В.; Селезнев, В. А.; Смирнов, К. В.
Title Применение тонких сверхпроводниковых пленок нитрида ванадия для изготовления счетчиков одиночных ИК-фотонов Type Conference Article
Year 2018 Publication Сборн. науч. труд. VII международн. конф. по фотонике и информац. опт. Abbreviated Journal Сборн. науч. труд. VII международн. конф. по фотонике и информац. опт.
Volume Issue Pages 60-61
Keywords (down) VN SSPD, SNSPD
Abstract Получены первые результаты по применению сверхпроводниковых пленок нитрида ванадия (VN) для детекторов одиночных фотонов ИК-диапазона. Изучение сверхпроводниковых однофотонных детекторов (SSPD), изготовленных на основе ультратонких (~5 нм) пленок VN, показало возможность создания устройств с близкой к насыщению зависимостью квантовой эффективности от тока смещения детекторов в телекоммуникационном диапазоне длин волн. Также нами были исследованы кинетическая индуктивность изготовленных структур с различной длиной сверхпроводниковой полоски и времена релаксации электронов в тонких сверхпроводниковых пленках VN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-7262-2445-9 Medium
Area Expedition Conference
Notes УДК 535(06)+004(06) Approved no
Call Number Serial 1252
Permanent link to this record
 

 
Author Райтович, А. А.; Пентин, И. В.; Золотов, Ф. И.; Селезнев, В. А.; Вахтомин, Ю. Б.; Смирнов, К. В.
Title Время энергетической релаксации электронов в сверхпроводниковых VN наноструктурах Type Conference Article
Year 2018 Publication Сборник трудов 13 Всероссийской конференции молодых ученых Abbreviated Journal
Volume Issue Pages 236-238
Keywords (down) VN films
Abstract
Address Саратовский филиал ИРЭ им. В.А. Котельникова РАН
Corporate Author Thesis
Publisher Техно-Декор Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Наноэлектроника, нанофотоника и нелинейная физика
Notes http://nnnph.ru/data/documents/Sborni-trudov-NNNF-2018.pdf Approved no
Call Number Serial 1807
Permanent link to this record
 

 
Author Nikoghosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V.
Title Effect of absorption on the efficiency of THz radiation generation in a nonlinear crystal placed into a waveguide Type Journal Article
Year 2018 Publication Armenian J. Phys. Abbreviated Journal Armenian J. Phys.
Volume 11 Issue 4 Pages 257-262
Keywords (down) THz, waveguide, nonlinear crystal
Abstract The effect of THz radiation absorption on the efficiency of generation of coherent THz radiation in a nonlinear optical crystal placed into a metal rectangular waveguide is studied. The efficiency of the nonlinear conversion of optical laser radiation to the THz band is also a function of the phase-matching (PM) condition inside the nonlinear crystal. The method of partial filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. Phase matching was obtained by the proper choice of the thickness of the nonlinear crystal, namely the degree of partial filling of the waveguide. We have studied the THz radiation attenuation caused by the losses in both the metal walls of the waveguide and in the crystal, taking into account the dimension of the cross section of the waveguide, the degree of partial filling and its dielectric constant.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1829-1171 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1291
Permanent link to this record
 

 
Author Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; Watanabe, K.; Grigorieva, I. V.; Polini, M.; Goltsman, G. N.; Geim, A. K.; Fedorov, G.
Title Resonant terahertz detection using graphene plasmons Type Journal Article
Year 2018 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 9 Issue Pages 5392 (1 to 8)
Keywords (down) THz, graphene plasmons
Abstract Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.
Address Physics Department, Moscow State University of Education (MSPU), Moscow, Russian Federation, 119435. fedorov.ge@mipt.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1148
Permanent link to this record
 

 
Author Sych, Denis; Shcherbatenko, Michael; Elezov, Michael; Goltsman, Gregory N.
Title Towards the improvement of the heterodyne receiver sensitivity beyond the quantum noise limit Type Conference Article
Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 245-247
Keywords (down) standard quantum limit, sub-SQL quantum receiver, Kennedy receiver, SSPD, SNSPD
Abstract Noise reduction in heterodyne receivers of the terahertz range is an important issue for astronomical applications. Quantum fluctuations, also known as shot noise, prohibit errorless measurements of the amplitude of electro-magnetic waves, and introduce the so-called standard quantum limit (SQL) on the minimum error of the heterodyne measurements. Nowadays, the sensitivity of modern heterodyne receivers approaches the SQL, and the growing demand for the improvement of measurement precision stimulates a number of both theoretical and experimental efforts to design novel measurement techniques aimed at overcoming the SQL. Here we demonstrate the first steps towards the practical implementation of a sub-SQL quantum receiver. As the principal resources, it requires a highly efficient single-photon counting detector and an interferometer-based scheme for mixing the signal with a low-power local oscillator. We describe the idea of such receiver and its main components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1314
Permanent link to this record