|   | 
Details
   web
Records
Author Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords (down) PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1403
Permanent link to this record
 

 
Author Polyakova, O. N.; Tikhonov, V. V.; Dzardanov, A. L.; Boyarskii, D. A.; Gol’tsman, G. N.
Title Dielectric characteristics of ore minerals in a 10–40 GHz frequency range Type Journal Article
Year 2008 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 34 Issue 11 Pages 967-970
Keywords (down) ore minerals, complex permittivity, sphalerite, magnetite, labradorite
Abstract A new approach to investigation of the complex dielectric permittivity of both nonmetallic and ore minerals in the microwave frequency range is proposed. Using this approach, data on the complex permittivity of sphalerite, magnetite, and labradorite in a 10–40 GHz frequency range have been obtained for the first time. A method is proposed for calculating the complex permittivity from experimentally measured frequency dependences of the reflection and transmission coefficients of a plane-parallel plate of a given mineral. Approximate expressions that can be used for calculations of the complex refractive index and permittivity of minerals are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1406
Permanent link to this record
 

 
Author Tikhonov, V. V.; Polyakova, O. N.; Gol’tsman, G. N.; Dzardanov, A. L.; Boyarskiy, D. A.
Title Determination of dielectric properties of ore minerals in the microwave band Type Journal Article
Year 2008 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 51 Issue 12 Pages 966-974
Keywords (down) ore complex permittivity, chalcopyrite, magnetite, sphalerite, labradorite
Abstract We consider a method for determining the complex dielectric permittivity of ore and nonmetal minerals in the microwave band of electromagnetic radiation. The results of measuring the reflectivity and transmittivity of chalcopyrite, magnetite, sphalerite, and labradorite samples in the frequency range 77–300 GHz are presented. A method for calculation of the complex dielectric permittivity of minerals on the basis of the obtained experimental data is proposed. The approximation formulas for calculation of the complex dielectric permittivity of the studied minerals are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1404
Permanent link to this record
 

 
Author Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C.
Title Spectral dependency of superconducting single photon detectors Type Journal Article
Year 2010 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 107 Issue 11 Pages 116103 (1 to 3)
Keywords (down) NbN SSPD, SNSPD
Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1392
Permanent link to this record
 

 
Author Wild, W.; Kardashev, N. S.; Likhachev, S. F.; Babakin, N. G.; Arkhipov, V. Y.; Vinogradov, I. S.; Andreyanov, V. V.; Fedorchuk, S. D.; Myshonkova, N. V.; Alexsandrov, Y. A.; Novokov, I. D.; Goltsman, G. N.; Cherepaschuk, A. M.; Shustov, B. M.; Vystavkin, A. N.; Koshelets, V. P.; Vdovin, V.F.; de Graauw, T.; Helmich, F.; vd Tak, F.; Shipman, R.; Baryshev, A.; Gao, J. R.; Khosropanah, P.; Roelfsema, P.; Barthel, P.; Spaans, M.; Mendez, M.; Klapwijk, T.; Israel, F.; Hogerheijde, M.; vd Werf, P.; Cernicharo, J.; Martin-Pintado, J.; Planesas, P.; Gallego, J. D.; Beaudin, G.; Krieg, J. M.; Gerin, M.; Pagani, L.; Saraceno, P.; Di Giorgio, A. M.; Cerulli, R.; Orfei, R.; Spinoglio, L.; Piazzo, L.; Liseau, R.; Belitsky, V.; Cherednichenko, S.; Poglitsch, A.; Raab, W.; Guesten, R.; Klein, B.; Stutzki, J.; Honingh, N.; Benz, A.; Murphy, A.; Trappe, N.; Räisänen, A.
Title Millimetron—a large Russian-European submillimeter space observatory Type Journal Article
Year 2009 Publication Exp. Astron. Abbreviated Journal Exp. Astron.
Volume 23 Issue 1 Pages 221-244
Keywords (down) Millimetron space observatory, VLBI, very long baseline interferometry
Abstract Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0922-6435 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1402
Permanent link to this record