toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sprengers, J. P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A. openurl 
  Title Waveguide superconducting single-photon detectors for integrated quantum photonic circuits Type Journal Article
  Year 2011 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 99 Issue 18 Pages 181110(1-3)  
  Keywords (up) optical waveguides, waveguide SSPD  
  Abstract The monolithic integration of single-photon sources, passive optical circuits, and single-photon detectors enables complex and scalable quantum photonic integrated circuits, for application in linear-optics quantum computing and quantum communications. Here, we demonstrate a key component of such a circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (~0%) at telecom wavelengths, high timing accuracy (~0 ps), and response time in the ns range and are fully compatible with the integration of single-photon sources, passive networks, and modulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 847  
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. url  openurl
  Title High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Miscellaneous
  Year 2012 Publication arXiv Abbreviated Journal arXiv  
  Volume 1108.5299 Issue Pages 1-23  
  Keywords (up) optical waveguides, waveguide SSPD, guantum photonics, jitter, detection efficiency  
  Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. High photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides which allows us to drastically increase the absorption length for incoming photons. When operating the detectors close to the critical current we achieve high on-chip single photon detection efficiency up to 91% at telecom wavelengths, with uncertainty dictated by the variation of the waveguide photon flux. We also observe remarkably low dark count rates without significant compromise of detection efficiency. Furthermore, our detectors are fully embedded in a scalable silicon photonic circuit and provide ultrashort timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 845  
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. doi  openurl
  Title Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths Type Journal Article
  Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 5 Issue Pages 10941 (1 to 11)  
  Keywords (up) optical waveguides; waveguide integrated SSPD; waveguide SSPD; nanophotonics  
  Abstract Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present efficiencies close to unity at 1550nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noiseequivalent powers in the 10–19W/Hz–1/2 range and the timing jitter is as low as 35ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26061283; PMCID:PMC4462017 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 946  
Permanent link to this record
 

 
Author Goltsman, G. N. url  doi
openurl 
  Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
  Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7236 Issue Pages 72360D (1 to 11)  
  Keywords (up) PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films  
  Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1403  
Permanent link to this record
 

 
Author Moshkova, M. A.; Divochiy, A. V.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V. url  isbn
openurl 
  Title Characterization of topologies of superconducting photon number resolving detectors Type Conference Article
  Year 2019 Publication Proc. 8th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 8th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 465-466  
  Keywords (up) PNR SSPD  
  Abstract Comparative analysis for different topologies of superconducting single-photon detectors with ability to resolve up to 4 photons in a short pulse of IR radiation has been carry out. It was developed the detector with a system detection efficiency of ~ 85 % at λ = 1550 nm. The possibility of using such detector to restore photon statistics of a pulsed radiation source was demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2536-4 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf Approved no  
  Call Number Serial 1803  
Permanent link to this record
 

 
Author Moshkova, M. A.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V. url  doi
openurl 
  Title High-efficiency multi-element superconducting single-photon detector Type Conference Article
  Year 2021 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 11771 Issue Pages 2-8  
  Keywords (up) PNR SSPD, large active area, detection efficiency  
  Abstract We present the result of the creation and investigation of the multi-element superconducting single photon detectors, which can recognize the number of photons (up to six) in a short pulse of the radiation at telecommunication wavelengths range. The best receivers coupled with single-mode fiber have the system quantum efficiency of ⁓85%. The receivers have a 100 ps time resolution and a few nanoseconds dead time that allows them to operate at megahertz counting rate. Implementation of the multi-element architecture for creation of the superconducting single photon detectors with increased sensitive area allows to create the high efficiency receivers coupled with multi-mode fibers and with preserving of the all advantages of superconducting photon counters.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Optics and Photon Counting  
  Notes Approved no  
  Call Number Serial 1795  
Permanent link to this record
 

 
Author Елезов, М. С.; Корнеев, А. А; Дивочий, А. В.; Гольцман, Г. Н. url  isbn
openurl 
  Title Сверхпроводящие однофотонные детекторы с разрешением числа фотонов Type Conference Article
  Year 2009 Publication Науч. сессия МИФИ Abbreviated Journal Науч. сессия МИФИ  
  Volume Issue Pages 47-58  
  Keywords (up) PNR SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-1042-1 Medium  
  Area Expedition Conference  
  Notes УДК 533.14(06)+004.056(06) Фотоника и информационная оптика Approved no  
  Call Number RPLAB @ sasha @ елезов2009сверхпроводящие Serial 1029  
Permanent link to this record
 

 
Author Чулкова, Г. М.; Семёнов, А. В.; Дивочий, А. В.; Тархов, М. А. url  openurl
  Title Сверхпроводниковый однофотонный детектор с разрешением числа фотонов для систем дальней телекоммуникационной связи Type Journal Article
  Year 2011 Publication Ж. радиоэлектрон. Abbreviated Journal Ж. радиоэлектрон.  
  Volume Issue 12 Pages 1-6  
  Keywords (up) PNR SSPD, SNSPD  
  Abstract Рассмотрена возможность применения сверхпроводникового однофотонного детектора, разрешающего число фотонов, в качестве датчика приёмных модулей телекоммуникационных линий. Показано, что для достижения доли ошибочных битов на уровне 10-11 достаточно на два порядка меньшей мощности в оптическом импульсе, чем при использовании существующих приёмных модулей.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ чулковасверхпроводниковый Serial 1031  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. url  openurl
  Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum  
  Volume Issue Pages  
  Keywords (up) PNR SSPD, SNSPD  
  Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no  
  Call Number RPLAB @ sasha @ korneevsuperconducting Serial 1046  
Permanent link to this record
 

 
Author Smirnov, K.; Moshkova, M.; Antipov, A.; Morozov, P.; Vakhtomin, Y. url  doi
openurl 
  Title The cascade switching of the photon number resolving superconducting single-photon detectors Type Journal Article
  Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 31 Issue 2 Pages 1-4  
  Keywords (up) PNR SSPD, SNSPD  
  Abstract In this article, present the first detailed study of cascade switching in superconducting photon number resolving detectors. The detectors were made in the form of four parallel nanowires, coupled with the single-mode optical fiber and mounted into a closed-cycle refrigerator with a temperature of 2.1 K. We found out the value of additional false pulses (N cas.sw. ) appearing due to cascade switching and showed that it is possible to set up the detector bias current that corresponds to a high level of the detection efficiency and a low level of N cas.sw. simultaneously. We reached the detection efficiency of 60% and N cas.sw. = 0.3%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1796  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: