toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G. url  doi
openurl 
  Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
  Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz  
  Volume Issue Pages 1-2  
  Keywords (down) NbN HEB mixer, superlattice  
  Abstract We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 6105209 Serial 1384  
Permanent link to this record
 

 
Author Kinev, N. V.; Filippenko, L. V.; Ozhegov, R. V.; Gorshkov, K. N.; Gol’tsman, G. N.; Koshelets, V. P. url  openurl
  Title Superconducting integrated receiver with HEB-mixer Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 78  
  Keywords (down) NbN HEB mixer, SIR, superconducting integrated receiver  
  Abstract Detectors in THz range with high sensitivity are very essential nowadays in different fields: space technology, atmospheric research, medicine and security. The most sensitive heterodyne detectors below 1 THz are the SIS- mixers due to its extremely high non-linearity and low noise level. Nevertheless, their effective range is strongly limited by superconducting gap Δ (about 1 THz for NbN circuits). Above 1 THz the detectors based on HEB (hot electron bolometers) are more effective [1]; their operation frequency is not limited from above and can be up to 70 THz [2]. HEBs can perform as both direct and heterodyne detectors (mixers). All HEB-mixers are used with external heterodyne, most useful are synthesizer with multipliers, quantum cascade lasers or far infrared lasers and backward-wave oscillators. Superconducting integrated receiver (SIR) is based on implementation of both SIS-miser and flux flow oscillator (FFO) acting as heterodyne at single chip [3]. Such receiver has been successfully applied at TELIS balloon-borne instrument for study of atmospheric constituents [4] and looks as very promising device for other THz missions including space research. Thus, there is a task to expand its operating range to higher frequencies. The frequency range of the SIR the operation is limited by both the SIS-mixer and the FFO maximum frequencies. The idea of present work is implementation of the HEB as a mixer in the SIR instead of the SIS traditionally used. We introduce the first results of integrating the HEB-mixer coupled to planar slot antenna with the FFO on one chip. For properly FFO operation the SIS harmonic mixer is used to phase lock the oscillator. The scheme of the SIR based on the HEB- mixer is presented in fig. 1. We have demonstrated the principal possibility of integration of both the HEB-mixer and the flux-flow oscillator on a single chip and succeed with sufficient power coupling for properly receiver operation. We measured the direct response of the HEB coupled to the antenna at THz frequencies by the FTS setup and noise temperature of the receiver with standard Y- factor measuring technique. The SIR operating range 450-620 GHz was achieved with the best uncorrected noise temperature of about 1000 К. One should note that it is still quite low frequencies for effective operation of the HEB-mixer; therefore we expect to obtain the better results for frequencies above 700 GHz (up to 1.2 THz). Another additional task is to increase the FFO frequencies by using NbTiN electrodes instead of NbN; currently we are working on this issue. This work was supported by the RFBR grant, the Ministry of Education and Science of Russia and Russian Academy of Sciences. References 1. D. Semenov, H.-W. Hubers, J. Schubert, G. N. Gol’tsman, A. I. Elantiev, B. M. Voronov, E. M. Gershenzon, Design and performance of the lattice-cooled hot-electron terahertz mixer, J. Appl. Phys. 88, 6758, 2000. 2. Maslennikov S. N., Finkel M. I., Antipov S. V. et al. Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70THz. Proc. 17 th international symposium on space terahertz technology. Paris, France: 2006.—may. Pp. 177 – 179. 3. V.P. Koshelets, S.V. Shitov. Integrated Superconducting Receivers. Supercond. Sci. Technol. Vol. 13. P. R53-R59. 2000. 4. Gert de Lange, Dick Boersma, Johannes Dercksen et.al. Development and Characterization of the Superconducting Integrated Receiver Channel of the TELIS Atmospheric Sounder. Supercond. Sci. Technol. vol. 23, No 4, 045016 (8pp). 2010.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1363  
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N. url  doi
openurl 
  Title Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 36 Issue 12 Pages 1103-1105  
  Keywords (down) NbN HEB mixer  
  Abstract Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1389  
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Petrenko, D.; Tretyakov, I.; Ryabchun, S.; Finkel, M.; Kaurova, N.; Gol’tsman, G.; Risacher, C.; Ricken, O.; Güsten, R. url  openurl
  Title Optimization of the intermediate frequency bandwidth in the THz HEB mixers Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 54  
  Keywords (down) NbN HEB mixer  
  Abstract We report on the studies of the intermediate frequency (IF) bandwidth of quasi-optically coupled NbN hot-electron bolometer (HEB) mixers which are aimed at the optimization of the mixer performance at terahertz frequencies. Extension of the IF bandwidth due to the contribution of electron diffusion to the heat removal from NbN microbolometers has been already demonstrated for NbN HEBs at subterahertz frequencies. However, reducing the size of the microbolometer causes degradation of the noise temperature. Using in-situ multilayer manufacturing process we succeeded to improve the transparency of the contacts for electrons which go away from microbolometer to the metallic antenna. The improved transparency and hence coupling efficiency counterbalances the noise temperature degradation. HEB mixers were tested in a laboratory heterodyne receiver with a narrow-band cold filter which allowed us to eliminate direct detection. We used a local oscillator with a quantum cascade laser (QCL) at a frequency of 4.745 THz [1] which was developed for the H-Channel of the German Receiver for Astronomy at Terahertz frequencies (GREAT). Both the noise and gain bandwidth were measured in the IF range from 0.5 to 8 GHz using the hot-cold technique and preliminary calibrated IF analyzer with a tunable microwave filter. For optimized HEB geometry we found the noise bandwidth as large as 7 GHz. We compare our results with the conventional and the hot-spot mixer models and show that further extension of the IF bandwidth should be possible via improving the sharpness of the superconducting transition. The cross characterization of the HEB mixer was performed in the test bed of GREAT at the Max-Planck-Institut für Radioastronomie with the same QCL LO and delivered results which were consistent with the laboratory studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1359  
Permanent link to this record
 

 
Author Krause, S.; Mityashkin, V.; Antipov, S.; Gol’tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudziński, M. url  doi
openurl 
  Title Reduction of phonon escape time for nbn hot electron bolometers by using gan buffer layers Type Journal Article
  Year 2017 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal IEEE Trans. Terahertz Sci. Technol.  
  Volume 7 Issue 1 Pages 53-59  
  Keywords (down) NbN HEB mixer  
  Abstract In this paper, we investigated the influence of the GaN buffer layer on the phonon escape time of phonon-cooled hot electron bolometers (HEBs) based on NbN material and compared our findings to conventionally employed Si substrate. The presented experimental setup and operation of the HEB close to the critical temperature of the NbN film allowed for the extraction of phonon escape time in a simplified manner. Two independent experiments were performed at GARD/Chalmers and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. By fitting the normalized IF measurement data to the heat balance equations, the escape time as a fitting parameter has been deduced and amounts to 45 ps for the HEB based on Si substrate as in contrast to a significantly reduced escape time of 18 ps for the HEB utilizing the GaN buffer layer under the assumption that no additional electron diffusion has taken place. This study indicates a high phonon transmissivity of the NbN-to-GaN interface and a prospective increase of IF bandwidth for HEB made of NbN on GaN buffer layers, which is desirable for future THz HEB heterodyne receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3446 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1330  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: