|   | 
Details
   web
Records
Author Semenov, A. D.; Hübers, H.-W.; Gol’tsman, G. N.; Smirnov, K.
Title Superconducting quantum detector for astronomy and X-ray spectroscopy Type Conference Article
Year 2002 Publication Proc. Int. Workshop on Supercond. Nano-Electronics Devices Abbreviated Journal Proc. Int. Workshop on Supercond. Nano-Electronics Devices
Volume Issue Pages 201-210
Keywords (up) NbN SSPD, SNSPD, SQD, superconducting quantum detectors, X-ray spectroscopy
Abstract We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.
Address Naples, Italy
Corporate Author Thesis
Publisher Springer Place of Publication Boston, MA Editor Pekola, J.; Ruggiero, B.; Silvestrini, P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4615-0737-6 Medium
Area Expedition Conference International Workshop on Superconducting Nano-Electronics Devices, May 28-June 1, 2001
Notes Approved no
Call Number semenov2002superconducting Serial 1525
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W.
Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 116 Issue 4 Pages 043906 (1 to 9)
Keywords (up) NbN SSPD, SNSPD, TaN
Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1357
Permanent link to this record
 

 
Author Edward Tong, C.-Y.; Loudkov, Denis N.; Paine, Scott N.; Marrone, Dan P.; Blundell, Raymond
Title Vector measurement of the beam pattern of a 1.5 THz superconducting HEB receiver Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 453-456
Keywords (up) NbTiN HEB mixers
Abstract Near-field vector beam pattern of the 1.5 THz superconducting Hot Electron Bolometer (HEB) receiver currently in operation in Northern Chile has been performed in our laboratory. Using an open waveguide probe, we have mapped both the amplitude and phase of the beam emerging from our 1.5 THz HEB receiver package, across a number of planes along the line of propagation of the radio-beam. With an integration time of about 100 ms per point, a signal-to-noise ratio of about 25 dB was achieved for a beam waist of 3.5 mm. These measurements have proved to be invaluable in achieving good alignment between the cryostat housing the HEB mixer and the remainder of the receiver and telescope optics. The accuracy of our beam measurement is estimated to be ±0.2 mm in position and ±5 arc minutes in angular displacement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1474
Permanent link to this record
 

 
Author Alda, Javier; Rico-García, José M.; López-Alonso, José M.; Boreman, G.
Title Optical antennas for nano-photonic applications Type Journal Article
Year 2005 Publication Nanotechnology Abbreviated Journal Nanotech.
Volume 16 Issue 5 Pages S230-S234
Keywords (up) optical antennas
Abstract Antenna-coupled optical detectors, also named optical antennas, are being developed and proposed as alternative detection devices for the millimetre, infrared, and visible spectra. Optical and infrared antennas represent a class of optical components that couple electromagnetic radiation in the visible and infrared wavelengths in the same way as radioelectric antennas do at the corresponding wavelengths. The size of optical antennas is in the range of the detected wavelength and they involve fabrication techniques with nanoscale spatial resolution. Optical antennas have already proved and potential advantages in the detection of light showing polarization dependence, tuneability, and rapid time response. They also can be considered as point detectors and directionally sensitive elements. So far, these detectors have been thoroughly tested in the mid-infrared with some positive results in the visible. The measurement and characterization of optical antennas requires the use of an experimental set-up with nanometric resolution. On the other hand, a computation simulation of the interaction between the material structures and the incoming electromagnetic radiation is needed to explore alternative designs of practical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 734
Permanent link to this record
 

 
Author Huang, Kevin C. Y.; Jun, Young Chul; Seo, Min-Kyo; Brongersma, Mark L.
Title Power flow from a dipole emitter near an optical antenna Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 20 Pages 19084-19092
Keywords (up) optical antennas
Abstract Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 743
Permanent link to this record