toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G. url  doi
openurl 
  Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6373 Issue Pages 63730J (1 to 5)  
  Keywords (up) NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations  
  Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Physics, Devices, and Systems  
  Notes Approved no  
  Call Number Serial 1441  
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte 2, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Increased bandwidth of NbN phonon cooled hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 381-386  
  Keywords (up) NbN HEB mixers, IF bandwidth  
  Abstract We study experimentally the IF gain bandwidth of NbN phonon-cooled hot-electron-bolometer (HEB) mixers for a set of devices with different contact structures but an identical NbN film. We observe that the IF bandwidth depends strongly on the exact contact structure and find an IF gain bandwidth of 6 GHz for a device with an additional superconducting layer (NbTiN) in between the active NbN film and the gold contact to the antenna. These results contradict the common opinion that the IF bandwidth is determined by the phonon-escape time between the NbN film and the substrate. Hence we calculate the IF gain bandwidth of a superconducting film using a two-temperature model. We find that the bandwidth increases strongly with operating temperature and is not limited by the phonon escape time. This is because of strong temperature dependence of the phonon specific heat in the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1494  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Kollberg, E.; Loudkov, D.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title Local oscillator power requirement and saturation effects in NbN HEB mixers Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 273-285  
  Keywords (up) NbN HEB mixers, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract The local oscillator power required for NbN hot-electron bolometric mixers (P LO ) was investigated with respect to mixer size, critical temperature and ambient temperature. P LO can be decreased by a factor of 10 as the mixer size decreases from 4×0.4 µm 2 to 0.6×0.13 µm 2 . For the smallest volume mixer the optimal local oscillator power was found to be 15 nW. We found that for such mixer no signal compression was observed up to an input signal of 2 nW which corresponds to an equivalent input load of 20,000 K. For a constant mixer volume, reduction of T c can decrease optimal local oscillator power at least by a factor of 2 without a deterioration of the receiver noise temperature. Bath temperature was found to have minor effect on the receiver characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, CA, USA Editor Jet Propulsion Laboratory, California Inst.it.u.t.e of Technology  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 318  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages 683-689  
  Keywords (up) NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Miao, W.; Zhang, W.; Zhong, J. Q.; Shi, S. C.; Delorme, Y.; Lefevre, R.; Feret, A; Vacelet, T url  doi
openurl 
  Title Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges Type Journal Article
  Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal <ef><bf><bc>Appl. Phys. Lett.  
  Volume 104 Issue Pages 052605(1-4)  
  Keywords (up) NbN HEB mixers, local oscillator power, RF nonuniform absorption  
  Abstract We interpret the experimental observation of a frequency-dependence of superconducting hot electron bolometer (HEB) mixers by taking into account the non-uniform absorption of the terahertz radiation on the superconducting HEB microbridge. The radiation absorption is assumed to be proportional to the local surface resistance of the HEB microbridge, which is computed using the Mattis-Bardeen theory. With this assumption the dc and mixing characteristics of a superconducting niobium-nitride (NbN) HEB device have been modeled at frequencies below and above the equilibrium gap frequency of the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 935  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: