toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages 6758-6767  
  Keywords (down) HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 306  
Permanent link to this record
 

 
Author Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Leiman, V. G.; Fedorov, G.; Goltzman, G. N.; Gayduchenko, I. A.; Titova, N.; Coquillat, D.; But, D.; Knap, W.; Mitin, V.; Shur, M. S. url  doi
openurl 
  Title Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection Type Journal Article
  Year 2016 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 120 Issue 4 Pages 044501 (1 to 13)  
  Keywords (down) carbon nanotubes, CNT detectors, plasmons  
  Abstract We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1777  
Permanent link to this record
 

 
Author Skocpol', W.J.; Beasley, M.R.; Tinkham M openurl 
  Title Self-heating hotspots in superconducting thin film microbridges Type Journal Article
  Year 1974 Publication Abbreviated Journal J. Appl. Phys.  
  Volume 45 Issue Pages 4054-4066  
  Keywords (down)  
  Abstract Heating effects in both long and short superconducting thin-<ef><ac><81>lm rnicrobridges are described and analyzed. Except near T(c), at low voltages where superconducting quantum processes occur, all of our experimental dc I-V characteristics can be satisfactorily understood on the basis of a simple model of a localized normal hotspot maintained by Joule heating. We consider approximations appropriate to the cases of long bridges, short bridges, and bridges coupled to microwave radiation. The analysis leads to analytic expressions for the I-V characteristics which agree well with the experimental data. We show that the formation of such a hotspot is the dominant cause of the hysteresis observed in the I-V characteristics at low temperatures. We also show that the growth of such a hotspot imposes a high-voltage limit on the ac Josephson effect in these devices, and we compare the importance of such heating effects at high voltages in various types of superconducting weak links.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 961  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: