toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Manova, N. N.; Smirnov, E. O.; Korneeva, Yu. P.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Superconducting photon counter for nanophotonics applications Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012147 (1 to 5)  
  Keywords (down) SSPD, SNSPD  
  Abstract We develop large area superconducting single-photon detector SSPD with a micron-wide strip suitable for free-space coupling or packaging with multi-mode optical fibres. The detector sensitive area is 20 μm in diameter. In near infrared (1330 nm wavelength) our SSPD exhibits above 30% detection efficiency with low dark counts and 45 ps timing jitter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1271  
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
  Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 92 Issue 10 Pages 104503 (1 to 9)  
  Keywords (down) SSPD, SNSPD  
  Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1343  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Heterodyne spectroscopy with superconducting single-photon detector Type Conference Article
  Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages 01005  
  Keywords (down) SSPD mixer, SNSPD  
  Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1205  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  openurl
  Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) SSPD  
  Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1303 Approved no  
  Call Number Serial 1312  
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A. url  doi
openurl 
  Title Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012116 (1 to 5)  
  Keywords (down) NbN SSPD, SNSPD, NbN films  
  Abstract We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1786  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: