toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M. openurl 
  Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
  Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 96 Issue 11 Pages 111113-(1-3)  
  Keywords (up) HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz  
  Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 624  
Permanent link to this record
 

 
Author Burke, P. J.; Schoelkopf, R. J.; Prober, D. E.; Skalare, A.; Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; Leduc, H. G. openurl 
  Title Spectrum of thermal fluctuation noise in diffusion and phonon cooled hot-electron mixers Type Journal Article
  Year 1998 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 72 Issue 12 Pages 1516-1518  
  Keywords (up) HEB mixer; thermal fluctuation noise; TFN  
  Abstract A systematic study of the intermediate frequency noise bandwidth of Nb thin-film superconducting hot-electron bolometers is presented. We have measured the spectrum of the output noise as well as the conversion efficiency over a very broad intermediate frequency range (from 0.1 to 7.5 GHz) for devices varying in length from 0.08 μm to 3 μm. Local oscillator and rf signals from 8 to 40 GHz were used. For a device of a given length, the spectrum of the output noise and the conversion efficiency behave similarly for intermediate frequencies less than the gain bandwidth, in accordance with a simple thermal model for both the mixing and thermal fluctuation noise. For higher intermediate frequencies the conversion efficiency decreases; in contrast, the noise decreases but has a second contribution which dominates at higher frequency. The noise bandwidth is larger than the gain bandwidth, and the mixer noise is low, between 120 and 530 K (double side band).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 760  
Permanent link to this record
 

 
Author Siddiqi, I.; Prober, D. E. url  doi
openurl 
  Title Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection Type Journal Article
  Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 8 Pages 1404  
  Keywords (up) HEB, mixers, dynamic range, saturation, LO power, local oscillator power, Nb  
  Abstract The sensitivity of present Nb diffusion-cooled hot-electron bolometer (HEB) mixers is not quantum limited, and can be improved by reducing the superconducting transition temperature TC. Lowering TC reduces thermal fluctuations, resulting in a decrease of the mixer noise temperature TM. However, lower TC mixers have reduced dynamic range and saturate more easily due to background noise. We present 30 GHz microwave measurements on a bilayer HEB system, Nb–Au, in which TC can be tuned with Au layer thickness to obtain the maximum sensitivity for a given noise background. These measurements are intended as a guide for the optimization of THz mixers. Using a Nb–Au mixer with TC = 1.6 K, we obtain TM = 50 K with 2 nW of local oscillator (LO) power. Good mixer performance is observed over a wide range of LO power and bias voltage and such a device should not exhibit saturation in a THz receiver.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 571  
Permanent link to this record
 

 
Author Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S. url  doi
openurl 
  Title Terahertz detection in single wall carbon nanotubes Type Journal Article
  Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue 3 Pages 033105  
  Keywords (up) HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz  
  Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes NEP is not shown Approved no  
  Call Number Serial 566  
Permanent link to this record
 

 
Author Hocker, L. O.; Sokoloff, D. R.; Daneu, V.; Szoke, A.; Javan, A. openurl 
  Title Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode Type Journal Article
  Year 1968 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 12 Issue 12 Pages  
  Keywords (up) optical antennas  
  Abstract Metal‐to‐metal point contact diodes were used to obtain the 54‐GHz beat notes between two adjacent 10.6‐μ CO2 laser transitions. The speed of the diodes in the far‐infrared is at least 1000 GHz. This was tested with a 337‐μ HCN laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 742  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: