|   | 
Details
   web
Records
Author Gol'tsman, G. N.; Karasik, B. S.; Svechnikov, S. I.; Gershenzon, E. M.; Ekström, H.; Kollberg E.
Title Noise temperature of NbN hot—electron quasioptical superconducting mixer in 200-700 GHz range Type Abstract
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 268
Keywords (up) NbN HEB mixers, noise temperature
Abstract The electron heating effect in superconducting films is becoming very attractive for the development of THz range mixers because of the absence of frequency limitations inherent in the bolometric mechanism. However, the evidence for the spectral dependence of the position of optimal operating point has been found recently for NbN thin film devices 1.2 • The effect is presumably attributed to the variation in the absorption of radiation depending on the frequency. Since the resistive state is not spatially uniform the coupling efficiency of the mixer device with radiation can be different for frequencies larger than Zeilh and those smaller than 2Alh (d is the effective superconducting gap in the resistive state). To study the effect more thoroughly we have investigated the noise temperature of quasioptical NbN mixer device with broken hue tapered slot antenna in the frequency range 200-700 GHz. The device consists of several (5-10) parallel strips 1 jim wide and 6-7 tun thick made from NbN film on Si0 2 -Si 3 N 4 -Si membrane. The strips are connected with the gold contacts of the slot-line antenna which serves both as bias and IF leads. We used backward wave oscillators as LO sources and a standard hot/cold load technique for noise temperature measurements. The frequency dependence of noise temperature is mainly determined by two factors: frequency properties of the antenna and frequency dependence of the NbN film impedance. To separate both factors we monitored the frequency dependence of the device responsivity in the detector mode at a higher temperature within the superconducting transition where the impedance of NbN film is close to its normal resistance. In this case the impedance of the device itself is frequency independent. The experimental results will be reported at the Symposium. 1. G. Gollsman, S. Jacobsson, H. EkstrOm, B. Karasik, E. Kollberg, and E. Gershenzon, “Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation,” Proc of the 5th Int. Symp. on Space Terahertz Technology, pp. 209-213a, May 10-12,1994. 2. B.S. Karasik, G.N. Gol i tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekstrom, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer,” presented at the ASC94, submitted to IEEE Trans. on Appl. Superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1627
Permanent link to this record
 

 
Author Zhang, W.; Li, N.; Jiang, L.; Ren, Y.; Yao, Q.-J.; Lin, Z.-H.; Shi, S.-C.; Voronov, B. M.; Gol’tsman, G. N.
Title Dependence of noise temperature of quasi-optical superconducting hot-electron bolometer mixers on bath temperature and optical-axis displacement Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6840 Issue Pages 684007 (1 to 8)
Keywords (up) NbN HEB mixers, noise temperature, LO power
Abstract It is known that the increase of bath temperature results in the decrease of critical current of superconducting hot-electron bolometer (HEB) mixers owing to the depression of superconductivity, thus leading to the degradation of the mixer’s sensitivity. Here we report our study on the effect of bath temperature on the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers incorporated with a two-arm log-spiral antenna. The correlation between the bath temperature, critical current, LO power requirement and noise temperature is investigated at 0.5 THz. Furthermore, the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers is examined while there is an optical-axis displacement between the center of the extended hemispherical silicon lens and the superconducting NbN HEB device, which is placed on the back of the lens. Detailed experimental results and analysis are presented.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Zhang, C.; Zhang, X.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Photonics
Notes Approved no
Call Number Serial 1415
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2814-2816
Keywords (up) NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N.
Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 87 Issue 1 Pages 502-510
Keywords (up) NbN HEB mixers, nonthermal
Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1558
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K.
Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances
Volume 9 Issue 7 Pages 075307
Keywords (up) NbN HEB mixers, QCL, IR
Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1293
Permanent link to this record
 

 
Author Edward Tong, C.-Y.; Loudkov, Denis N.; Paine, Scott N.; Marrone, Dan P.; Blundell, Raymond
Title Vector measurement of the beam pattern of a 1.5 THz superconducting HEB receiver Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 453-456
Keywords (up) NbTiN HEB mixers
Abstract Near-field vector beam pattern of the 1.5 THz superconducting Hot Electron Bolometer (HEB) receiver currently in operation in Northern Chile has been performed in our laboratory. Using an open waveguide probe, we have mapped both the amplitude and phase of the beam emerging from our 1.5 THz HEB receiver package, across a number of planes along the line of propagation of the radio-beam. With an integration time of about 100 ms per point, a signal-to-noise ratio of about 25 dB was achieved for a beam waist of 3.5 mm. These measurements have proved to be invaluable in achieving good alignment between the cryostat housing the HEB mixer and the remainder of the receiver and telescope optics. The accuracy of our beam measurement is estimated to be ±0.2 mm in position and ±5 arc minutes in angular displacement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1474
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Yngvesson, K. S.
Title Hot electron bolometer detectors and mixers based on a superconducting-two-dimensional electron gas-superconductor structure Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 163-166
Keywords (up) S-2DEG-S HEB mixers, detectors, AlGaAs/GaAs heterostructures, NbN
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1603
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S.
Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 7 Pages 971-974
Keywords (up) semiconducting superlattice frequency multiplier, NbN HEB mixers
Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1378
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 23-28
Keywords (up) waveguide NbN HEB mixers
Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 275
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 65-72
Keywords (up) waveguide NbN HEB mixers
Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 326
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G.
Title A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type Conference Article
Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest
Volume 2 Issue Pages 751-754
Keywords (up) waveguide NbN HEB mixers
Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.
Address Philadelphia, PA, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1516
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G.
Title Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 628-631
Keywords (up) waveguide NbN HEB mixers
Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 719
Permanent link to this record
 

 
Author Lobanov, Y.V.; Tong, C.-Y.E.; Hedden, A.S.; Blundell, R.; Voronov, B.M.; Gol'tsman, G.N.
Title Direct measurement of the gain and noise bandwidths of HEB mixers Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 21 Issue 3 Pages 645-648
Keywords (up) waveguide NbN HEB mixers
Abstract The intermediate frequency (IF) bandwidth of a hot electron bolometer (HEB) mixer is an important parameter of the mixer, in that it helps to determine its suitability for a given application. With the availability of wideband low noise amplifiers, it is simple to measure the performance of an HEB mixer over a wide range of IF at a fixed LO frequency using the standard Y-factor method. This in-situ method allows us to measure both the gain and noise bandwidths simultaneously. We have also measured mixer output impedance with a vector network analyser. Intrinsic time constant has been extracted from the impedance data and compared to the mixer's bandwidths determined from receiver Y-factor measurement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 720
Permanent link to this record
 

 
Author Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory
Title A digital terahertz power meter based on an NbN thin film Type Abstract
Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 170
Keywords (up) waveguide NbN HEB mixers
Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1366
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G.
Title An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 472-475
Keywords (up) waveguide NbN HEB mixers
Abstract We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 1439677 Serial 1464
Permanent link to this record