|   | 
Details
   web
Records
Author Prober, D. E.
Title Superconducting terahertz mixer using a transition-edge microbolometer Type Journal Article
Year 1993 Publication Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520-2157 Abbreviated Journal
Volume Issue Pages 2119-2121
Keywords (up)
Abstract We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and a rf signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid ( < 0.1 ns) outdiffision of hot electrons occurs. This gives large intermediate frequency (if) response. The mixer offers ~4 GHz if bandwidth, z 80 Cl rf resistive impedance, good match to the if amplifier, and requires only l-20 nW of local oscillator power. The upper rf frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is l/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 T, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 955
Permanent link to this record
 

 
Author Krasnosvobodtsev, S. I.; Shabanova, N,P.; Ekimov, E.V.; Nozdrin, V.S.; Pechen, E,V.
Title Critical magnetic field of NbC: new data on clean superconductor films Type Journal Article
Year 1995 Publication Abbreviated Journal Zh. Eks. Teor.Fiz.
Volume Issue Pages 534-537
Keywords (up)
Abstract The temperature dependence of the upper critical magnetic fields of exceptionally low-defect-density films of the superconducting compound NbC has been investigated, and previously unknown parameters of this clean superconductor and its electronic characteristics have been evaluated. An electron density of states at the Fermi level equal to 1.3 states/ eV. Nb atom, a Fermi velocity equal to 2.2X lo7 cmls, a plasma frequency equal to 3.6 eV, and a coherence length to 24 nm have been obtained with an electron mean free path exceeding 40 nm. A vortex-free state existing over the entire temperature range below T, which causes a many-fold increase in the critical magnetic field of the films when the field is aligned parallel to their surface, has been discovered in very thin films of superconducting niobium carbide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 956
Permanent link to this record
 

 
Author Shklovskij V.A.
Title Hot Electrons in Metals at Low Temperatures Type Journal Article
Year 1980 Publication J. Low Temp. Phys. Abbreviated Journal
Volume 41 Issue Pages 375-396
Keywords (up)
Abstract Hot electrons in metals at helium temperatures under steady conditions can be produced by passing an electric current of moderate density through thin, narrow (-1 μm wide) metallic films in good thermal contact with bulk single-crystal dielectric substrates. This paper is concerned with the theory of hot electrons in normal metals at low temperatures (when θ<< θ(D), where θ is the average electron energy and θ(D) is the Debye temperature). The theory is formulated in terms of realistic electron and phonon dispersion laws, taking into account the experimental possibility of heat removal from the sample. In the case in which the temperature approximation of Kagnov, Lifshitz, and Tanatarov is not satisfied when elastic scattering of electrons is dominant in a steady state electric field, the kinetic equation is derived for the energy-dependent, hot electron distribution function, which determines the associated nonlinear responses. The solution of this equation is discussed for a simple model. It is shown that the experimental information on the electron-phonon interaction in a metal can be obtained in terms of the well-known spectral functions. This is illustrated by experiments determining the nonlinear field dependence of the resistance, by tunnel experiments, and by critical current hysteresis measurements (for superconducting metals). Theoretical estimates which support the observability of the effects underdiscussion are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 957
Permanent link to this record
 

 
Author Gousev, Yu. P.; Semenov, A. D.; Pechen, E. V.; Varlashkin, A. V.; Nebosis, R. S.; Renk K. F
Title Coupling of terahertz radiation to a high-Т(с) superconducting hot electron bolometer mixer Type Journal Article
Year 1996 Publication Abbreviated Journal Appl. Phys. Lett.,
Volume 69 Issue Pages 691-693
Keywords (up)
Abstract We report on efficient coupling of THz radiation to a high-T(c) superconducting hot electron bolometer that is suitable for heterodyne detection. Our quasioptical system consisted of a planar self-complementary spiral antenna on a dielectric substrate clamped to an extended hyperhemispherical lens. The antenna was integrated into a co-planar line for broadband intermediate frequency matching. Measurements in the homodyne regime at a frequency of 2.5 THz showed a radiation pattern with a beam width of 1° and a coupling efficiency of 0.1. We measured, at an intermediate frequency of 1.5 GHz, an output noise temperature of'160 K and estimated for the device, operated in the heterodyne regime, a system noise temperature of 30 000 K. We also discuss possibilities of significant improvement of the sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 958
Permanent link to this record
 

 
Author Boogaard, G.R.; Verbruggen, A.H.; Belzig, W.; Klapwijk T.M.
Title Resistance of superconducting nanowires connected to normal-metal leads Type Journal Article
Year 2004 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 69 Issue Pages 220503(R)(1-4)
Keywords (up)
Abstract We study experimentally the low temperature resistance of superconducting nanowires connected to normal metal reservoirs. Wefind that a substantial fraction of the nanowires is resistive, down to the lowest tempera-ture measured, indicative of an intrinsic boundary resistance due to the Andreev-conversion of normal current to supercurrent. The results are successfully analyzed in terms of the kinetic equations for diffusive superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 960
Permanent link to this record