|   | 
Details
   web
Records
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N.
Title NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 151-154
Keywords (up) HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Charlottesville, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 590
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Goltsman, G. N.
Title Fabrication and characterisation of NbN HEB mixers with in situ gold contacts Type Conference Article
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 62-67
Keywords (up) HEB, mixer, NbN, in-situ contacts
Abstract We present our recent results of the fabrication and testing of NbN hot-electron bolometer mixers with in situ gold contacts. An intermediate frequency bandwidth of about 6 GHz has been measured for the mixers made of a 3.5-nm NbN film on a plane Si substrate with in situ gold contacts, compared to 3.5 GHz for devices made of the same film with ex situ gold contacts. The increase in the intermediate frequency bandwidth is attributed to additional diffusion cooling through the improved contacts, which is further supported by the its dependence on the bridge length: intermediate frequency bandwidths of 3.5 GHz and 6 GHz have been measured for devices with lengths of 0.35 μm and 0.16 μm respectively at a local oscillator frequency of 300 GHz near the superconducting transition. At a local oscillator frequency of 2.5 THz the receiver has offered a DSB noise temperature of 950 K. When compared to the previous result of 1300 K obtained at the same local oscillator frequency for devices fabricated with an ex situ route, such a low value of the noise temperature may also be attributed to the improved gold contacts.
Address
Corporate Author Thesis
Publisher Place of Publication Groningen, Netherlands Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 412
Permanent link to this record
 

 
Author Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N.
Title NbN HEB mixer: fabrication, noise temperature reduction and characterization Type Conference Article
Year 2008 Publication Proc. Basic problems of superconductivity Abbreviated Journal
Volume Issue Pages
Keywords (up) HEB, mixer, noise temperature, conversion gain bandwidth
Abstract We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Moscow-Zvenigorod Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 591
Permanent link to this record
 

 
Author Tret'yakov, I. V.; Kaurova, N. S.; Voronov, B. M.; Anfert'ev, V. A.; Revin, L. S.; Vaks, V. L.; Gol'tsman, G. N.
Title The influence of the diffusion cooling on the noise band of the superconductor NbN hot-electron bolometer operating in the terahertz range Type Journal Article
Year 2016 Publication Tech. Phys. Lett. Abbreviated Journal
Volume 42 Issue 6 Pages 563-566
Keywords (up) HEB, noise bandwidth, conversion gain bandwidth, noise temperature, Andreev reflection
Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb â‰<aa> Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1106
Permanent link to this record
 

 
Author Kaurova, N. S.; Finkel, M. I.; Maslennikov, S. N.; Vahtomin, Yu. B.; Antipov, S. V.; Smirnov, K. V.; Voronov, B. M.; Gol'tsman, G. N.; Ilyin, K. S.
Title Submillimeter mixer based on YBa2Cu3O7-x thin film Type Conference Article
Year 2004 Publication Proc. 1-st conf. Fundamental problems of high temperature superconductivity Abbreviated Journal
Volume Issue Pages 291
Keywords (up) HTS, HEB mixer
Abstract
Address Moscow-Zvenigorod
Corporate Author Thesis
Publisher Place of Publication Moscow-Zvenigorod Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 355
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N.
Title Superconducting hot electron bolometer mixer for middle IR range Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 686-687
Keywords (up) IR NbN HEB mixer, detector, GaAs substrate
Abstract The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 4023440 Serial 1297
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Yu. P.; Kaurova, N. S.; Voronov, B. M.; Gol'tsman, G. N.
Title Hot electron bolometer mixer for 20 – 40 THz frequency range Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 393-397
Keywords (up) IR NbN HEB mixers
Abstract The developed HEB mixer was based on a 5 nm thick NbN film deposited on a GaAs substrate. The active area of the film was patterned as a 30×20 μm 2 strip and coupled with a 50 Ohm coplanar line deposited in situ. An extended hemispherical germanium lens was used to focus the LO radiation on the mixer. The responsivity of the mixer was measured in a direct detection mode in the 25÷64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 μm wavelength CW CO 2 laser was utilized as a local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 369
Permanent link to this record
 

 
Author Korneeva, Y.; Florya, I.; Vdovichev, S.; Moshkova, M.; Simonov, N.; Kaurova, N.; Korneev, A.; Goltsman, G.
Title Comparison of hot spot formation in nbn and mon thin superconducting films after photon absorption Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords (up) MoNx SSPD
Abstract In superconducting single-photon detectors (SSPD), the efficiency of local suppression of superconductivity and hotspot formation is controlled by diffusivity and electron-phonon interaction time. Here, we selected a material, 3.6-nm-thick MoNx film, which features diffusivity close to those of NbN traditionally used for SSPD fabrication, but with electron-phonon interaction time an order of magnitude larger. In MoN ∞ detectors, we study the dependence of detection efficiency on bias current, photon energy, and strip width, and compare it with NbN SSPD. We observe nonlinear current-energy dependence in MoNx SSPD and more pronounced plateaus in dependences of detection efficiency on bias current, which we attribute to longer electron-phonon interaction time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1325
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Development of A Silicon Membrane-based Multi-pixel Hot Electron Bolometer Receiver Type Conference Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 6
Keywords (up) Multi-pixel, HEB, silicon-on-insulator, horn array
Abstract We report on the development of a multi-pixel

Hot Electron Bolometer (HEB) receiver fabricated using

silicon membrane technology. The receiver comprises a

2 × 2 array of four HEB mixers, fabricated on a single

chip. The HEB mixer chip is based on a superconducting

NbN thin film deposited on top of the silicon-on-insulator

(SOI) substrate. The thicknesses of the device layer and

handling layer of the SOI substrate are 20 μm and 300 μm

respectively. The thickness of the device layer is chosen

such that it corresponds to a quarter-wave in silicon at

1.35 THz. The HEB mixer is integrated with a bow-tie

antenna structure, in turn designed for coupling to a

circular waveguide,
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1111
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Development of a silicon membrane-based multipixel hot electron bolometer receiver Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords (up) Multi-pixel, NbN HEB, silicon-on-insulator, horn array
Abstract We report on the development of a multipixel hot electron bolometer (HEB) receiver fabricated using silicon membrane technology. The receiver comprises a 2 × 2 array of four HEB mixers, fabricated on a single chip. The HEB mixer chip is based on a superconducting NbN thin-film deposited on top of the silicon-on-insulator (SOI) substrate. The thicknesses of the device layer and handling layer of the SOI substrate are 20 and 300 μm, respectively. The thickness of the device layer is chosen such that it corresponds to a quarter-wave in silicon at 1.35 THz. The HEB mixer is integrated with a bow-tie antenna structure, in turn designed for coupling to a circular waveguide, fed by a monolithic drilled smooth-walled horn array.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1324
Permanent link to this record