toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elezov, M.; Scherbatenko, M.; Sych, D.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A. url  doi
openurl 
  Title Towards the fiber-optic Kennedy quantum receiver Type Conference Article
  Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 220 Issue Pages 03011 (1 to 2)  
  Keywords (up) SSPD, SNSPD, Kennedy quantum receiver  
  Abstract We consider practical aspects of using standard fiber-optic elements and superconducting nanowire single-photon detectors for the development of a practical quantum receiver based on the Kennedy scheme. Our receiver allows to discriminate two phase-modulated coherent states of light at a wavelength of 1.5 microns in continuous mode with bit rate 200 Kbit/s and error rate about two times below the standard quantum limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1288  
Permanent link to this record
 

 
Author McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. doi  openurl
  Title Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection Type Journal Article
  Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 21 Issue 7 Pages 8904-8915  
  Keywords (up) SSPD, SNSPD, lidar, SSPD applications, SNSPD applications  
  Abstract This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1053  
Permanent link to this record
 

 
Author Smirnov, E.; Golikov, A.; Zolotov, P.; Kovalyuk, V.; Lobino, M.; Voronov, B.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title Superconducting nanowire single-photon detector on lithium niobate Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051025  
  Keywords (up) SSPD, SNSPD, lithium niobate, LN  
  Abstract We demonstrate superconducting niobium nitride nanowires folded on top of lithium niobate substrate. We report of 6% system detection efficiency at 20 s−1 dark count rate at telecommunication wavelength (1550 nm). Our results shown great potential for the use of NbN nanowires in the field of linear and nonlinear integrated quantum photonics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1194  
Permanent link to this record
 

 
Author Henrich, D.; Dorner,S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M. openurl 
  Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content Type Journal Article
  Year 2012 Publication Abbreviated Journal J. Appl. Phys.  
  Volume 112 Issue Pages  
  Keywords (up) SSPD, SNSPD, magnetron sputtering, spectrum, NbN film, nitrogen concentration  
  Abstract The spectral detection efficiency and the dark count rate of superconducting nanowire

single-photon detectors (SNSPD) have been studied systematically on detectors made from thin

NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm

thick NbN films results in a decrease of the dark count rates more than two orders of magnitude

and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed

phenomena are explained by an improvement of uniformity of NbN films that has been confirmed

by a decrease of resistivity and an increase of the ratio of the measured critical current to the

depairing current. The latter factor is considered as the most crucial for both the cut-off

wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria

for material properties to optimize SNSPD in the infrared spectral region. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4757625]
 
  Address  
  Corporate Author D. Henrich, S. Dorner, M. Hofherr, K. Il'in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, M. Siegel Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ seleznev @ Serial 877  
Permanent link to this record
 

 
Author Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P. url  doi
openurl 
  Title Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits Type Journal Article
  Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 21 Issue 19 Pages 22683-22692  
  Keywords (up) SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides  
  Abstract We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24104155 Approved no  
  Call Number Serial 1213  
Permanent link to this record
 

 
Author Ejrnaes, M.; Cristiano, R.; Quaranta, O.; Pagano, S.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title A cascade switching superconducting single photon detector Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue 26 Pages 262509 (1 to 3)  
  Keywords (up) SSPD, SNSPD, parallel-wire  
  Abstract We have realized superconducting single photon detectors with reduced inductance and increased signal pulse amplitude. The detectors are based on a parallel connection of ultrathin NbN nanowires with a common bias inductance. When properly biased, an absorbed photon induces a cascade switch of all the parallel wires generating a signal pulse amplitude of 2mV. The parallel wire configuration lowers the detector inductance and reduces the response time well below 1ns.

This work was performed in the framework of the EU project “SINPHONIA” NMP4-CT-2005-016433.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1418  
Permanent link to this record
 

 
Author Minaeva, O.; Fraine, A.; Korneev, A.; Divochiy, A.; Goltsman, G.; Sergienko, A. url  doi
openurl 
  Title High resolution optical time-domain reflectometry using superconducting single-photon detectors Type Conference Article
  Year 2012 Publication Frontiers in Opt. 2012/Laser Sci. XXVIII Abbreviated Journal Frontiers in Opt. 2012/Laser Sci. XXVIII  
  Volume Issue Pages Fw3a.39  
  Keywords (up) SSPD, SNSPD, Photodetectors; Fiber characterization; Light beams; Optical time domain reflectometry; Photon counting; Single mode fibers; Single photon detectors; Superconductors  
  Abstract We discuss the advantages and limitations of single-photon optical time-domain reflectometry with superconducting single-photon detectors. The higher two-point resolution can be achieved due to superior timing performance of SSPDs in comparison with InGaAs APDs.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1237  
Permanent link to this record
 

 
Author Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol'tsman, G.; Pernice, W. openurl 
  Title Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors Type Journal Article
  Year 2017 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 25 Issue 8 Pages 8739-8750  
  Keywords (up) SSPD, SNSPD, photon counting; Infrared; Quantum detectors; Integrated optics; Multiphoton processes; Photon statistics  
  Abstract We investigate how the bias current affects the hot-spot relaxation dynamics in niobium nitride. We use for this purpose a near-infrared pump-probe technique on a waveguide-integrated superconducting nanowire single-photon detector driven in the two-photon regime. We observe a strong increase in the picosecond relaxation time for higher bias currents. A minimum relaxation time of (22 +/- 1)ps is obtained when applying a bias current of 50% of the switching current at 1.7 K bath temperature. We also propose a practical approach to accurately estimate the photon detection regimes based on the reconstruction of the measured detector tomography at different bias currents and for different illumination conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1118  
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
  Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 103 Issue Pages 10002 (1 to 2)  
  Keywords (up) SSPD, SNSPD, QKD  
  Abstract Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1352  
Permanent link to this record
 

 
Author Polyakova, M. I.; Florya, I. N.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Extracting hot-spot correlation length from SNSPD tomography data Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012166 (1 to 4)  
  Keywords (up) SSPD, SNSPD, quantum detector tomography, QDT  
  Abstract We present data of quantum detector tomography for the samples specifically optimized for this problem. Using this method, we take results of hot-spot correlation length of 17 ± 2 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1273  
Permanent link to this record
 

 
Author Семенов, Александр Владимирович pdf  openurl
  Title Проскальзывание фазы, поглощение электромагнитного излучения и формирование отклика в детекторах на основе узких полосок сверхпроводников Type Manuscript
  Year 2010 Publication М. МПГУ Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) SSPD, SNSPD, response  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1150  
Permanent link to this record
 

 
Author Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zadeh, Iman E.; Zwiller, Valery; Benson, Oliver doi  openurl
  Title Measuring the quantum nature of light with a single source and a single detector Type Journal Article
  Year 2012 Publication Phys. Rev. A Abbreviated Journal  
  Volume 86 Issue 5 Pages 053814  
  Keywords (up) SSPD, SNSPD, saturation count rates, dead time, dynamic range  
  Abstract An elementary experiment in optics consists of a light source and a detector. Yet, if the source generates nonclassical correlations such an experiment is capable of unambiguously demonstrating the quantum nature of light. We realized such an experiment with a defect center in diamond and a superconducting detector. Previous experiments relied on more complex setups, such as the Hanbury Brown and Twiss configuration, where a beam splitter directs light to two photodetectors, creating the false impression that the beam splitter is a fundamentally required element. As an additional benefit, our results provide a simplification of the widely used photon-correlation techniques.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1089  
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; An, P.; Golikov, A.; Zubkova, E.; Ferrari, S.; Kahl, O.; Pernice, W.; Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Superconducting single-photon detector for integrated waveguide spectrometer Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04009  
  Keywords (up) SSPD, SNSPD, Si3N4 waveguides, waveguide spectrometer  
  Abstract We present our recent achievements in the development of an on-chip spectrometer consisting of arrayed waveguide grating made of Si3N4 waveguides and NbN superconducting single-photon detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1199  
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59571K (1 to 10)  
  Keywords (up) SSPD, SNSPD, single-photon detectors, quantum communication, quantum cryptography, superconductors, infrared optical detectors  
  Abstract We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1459  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Slepneva, S.; Seleznev, V.; Chulkova, G.; Okunev, O.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting nanostructured detectors capable of single photon counting of mid-infrared optical radiation Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59570A (1 to 9)  
  Keywords (up) SSPD, SNSPD, single-photon detectors, superconductors, superconducting  
  Abstract We report on our progress in research and development of ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs were made of the 4-nm-thick NbN films with Tc 11 K, patterned as meander-shaped, 100-nm-wide strips, and covering an area of 10×10 μm2. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, a hotspot of excited electrons and redistribution of the biasing supercurrent, jointly produce a picosecond voltage transient signal across the superconducting nanostripe. The SSPDs are typically operated at 4.2 K, but their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by the optical absorption of our 4-nm-thick NbN film. With the wavelength increase of the incident photons,the QE of SSPDs decreases significantly, but even at the wavelength of 6 μm, the detector is able to count single photons and exhibits QE of about 10-2 %. The dark (false) count rate at 2 K is as low as 2x10-4 s,-1 which makes our detector essentially a background-limited sensor. The very low dark-count rate results in a noise equivalent power (NEP) below 10-18 WHz-1/2 for the mid-infrared range (6 μm). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for another, lower-Tc materials with a narrow superconducting gap and low quasiparticles diffusivity. The use of such superconductors should shift the cutoff wavelength below 10 μm.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: