|   | 
Details
   web
Records
Author Novotny, Lukas; van Hulst, Niek
Title Antennas for light Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue 2 Pages 83-90
Keywords (up) optical antennas
Abstract Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 748
Permanent link to this record
 

 
Author Tang, Liang; Kocabas, Sukru Ekin; Latif, Salman; Okyay, Ali K.; Ly-Gagnon, Dany-Sebastien; Saraswat, Krishna C.; Miller, David A. B.
Title Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna Type Journal Article
Year 2008 Publication Nature Photonics Abbreviated Journal
Volume 2 Issue Pages 226-229
Keywords (up) optical antennas
Abstract A critical challenge for the convergence of optics and electronics is that the micrometre scale of optics is significantly larger than the nanometre scale of modern electronic devices. In the conversion from photons to electrons by photodetectors, this size incompatibility often leads to substantial penalties in power dissipation, area, latency and noise. A photodetector can be made smaller by using a subwavelength active region; however, this can result in very low responsivity because of the diffraction limit of the light. Here we exploit the idea of a half-wave Hertz dipole antenna (length approx 380 nm) from radio waves, but at near-infrared wavelengths (length approx 1.3 microm), to concentrate radiation into a nanometre-scale germanium photodetector. This gives a polarization contrast of a factor of 20 in the resulting photocurrent in the subwavelength germanium element, which has an active volume of 0.00072 microm3, a size that is two orders of magnitude smaller than previously demonstrated detectors at such wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 858
Permanent link to this record
 

 
Author Williams, Benjamin S.
Title Terahertz quantum-cascade lasers Type Journal Article
Year 2007 Publication Nature Photonics Abbreviated Journal
Volume 1 Issue Pages 517-525
Keywords (up) QCL review
Abstract Six years after their birth, terahertz quantum-cascade lasers can now deliver milliwatts or more of continuous-wave coherent radiation throughout the terahertz range — the spectral regime between millimetre and infrared wavelengths, which has long resisted development. This paper reviews the state-of-the-art and future prospects for these lasers, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 632
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Hacking commercial quantum cryptography systems by tailored bright illumination Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 10 Pages 686 - 689
Keywords (up) quantum cryptography, hacking, QKD, APD
Abstract The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 657
Permanent link to this record
 

 
Author Takesue, Hiroki; Nam, Sae Woo; Zhang, Qiang; Hadfield, Robert H.; Honjo, Toshimori; Tamaki, Kiyoshi; Yamamoto, Yoshihisa
Title Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors Type Journal Article
Year 2007 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 1 Issue Pages 343-348
Keywords (up) quantum cryptography, SSPD, QKD, DSP
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 609
Permanent link to this record