|   | 
Details
   web
Records
Author Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N.
Title Optimisation of spontaneous four-wave mixing in a ring microcavity Type Conference Article
Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 47 Issue 10 Pages 887-891
Keywords (down) ring microcavity
Abstract Abstract. A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the disper- sion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numeri- cal calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: com- pletely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1142
Permanent link to this record
 

 
Author Казаков, А. Ю.; Кардакова, А. И.; Селиверстов, С. В.; Горшков, К. Н.; Дивочий, А. В.; Финкель, М. И.; Корнеев, А. А.; Вахтомин, Ю. Б.
Title Возможность применения сверхпроводниковых материалов в качестве отражающего покрытия холодного зеркала телескопа субмиллиметрового диапазона Type Journal Article
Year 2012 Publication Совр. проб. науки и обр. Abbreviated Journal Совр. проб. науки и обр.
Volume Issue 3 Pages 1-5
Keywords (down) radio telescope, superconducting coating
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2070-7428 ISBN Medium
Area Expedition Conference
Notes УДК 520.272.2 Approved no
Call Number RPLAB @ sasha @ казаковвозможность Serial 1030
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material Type Miscellaneous
Year 2017 Publication Optica Abbreviated Journal
Volume Issue Pages 1-9
Keywords (down) Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution
Abstract This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers.
Address
Corporate Author Thesis
Publisher Osa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Kahl:17 Serial 1218
Permanent link to this record
 

 
Author Semenov, A.; Goltsman, G.; Korneev, A.
Title Quantum detection by current carrying superconducting film Type Journal Article
Year 2001 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 351 Issue 4 Pages 349-356
Keywords (down) quantum detection, phase slip centers, quasiparticle diffusion
Abstract We describe a novel quantum detection mechanism in the superconducting film carrying supercurrent. The mechanism incorporates growing normal domain and breaking of superconductivity by the bias current. A single photon absorbed in the film creates transient normal spot that causes redistribution of the current and, consequently, increase of the current density in superconducting areas. When the current density exceeds the critical value, the film switches into resistive state and generates the voltage pulse. Analysis shows that a submicron-wide film of conventional low temperature superconductor operated in liquid helium may detect single far-infrared photon. The amplitude and duration of the voltage pulse are in the millivolt and picosecond range, respectively. The quantitative model is presented that allows simulation of the detector utilizing this detection mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 507
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01004 (1 to 2)
Keywords (down) QKD, SSPD, SNSPD
Abstract Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1327
Permanent link to this record