|   | 
Details
   web
Records
Author Akalin, Tahsin
Title Terahertz sources: Powerful photomixers Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 2 Pages 81
Keywords (up) fromIPMRAS
Abstract An efficient continuous-wave source of terahertz radiation that combines the outputs from two near-infrared semiconductor lasers in a novel photomixer looks set to benefit applications in spectroscopy and imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 787
Permanent link to this record
 

 
Author Ulhaq, A.; Weiler, S.; Ulrich, S. M.; Roßbach, R.; Jetter, M.; Michler, P.
Title Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 238-242
Keywords (up) fromIPMRAS
Abstract Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both `single' and `cascaded' photon emission from the Mollow triplet sidebands. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ~ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 788
Permanent link to this record
 

 
Author Schmidt, Markus A.
Title Integration: Fibres embrace optoelectronics Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 3 Pages 143-145
Keywords (up) fromIPMRAS
Abstract The demonstration of an in-fibre semiconductor photodetector with gigahertz bandwidth bodes well for the future development of hybrid fibre optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 789
Permanent link to this record
 

 
Author Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.
Title A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 259-264
Keywords (up) fromIPMRAS
Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 790
Permanent link to this record
 

 
Author Goulielmakis, Eleftherios
Title Attosecond photonics: Extreme ultraviolet catastrophes Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 3 Pages 142-143
Keywords (up) fromIPMRAS
Abstract Extreme ultraviolet attosecond pulses, which emerge from the interaction of atoms with intense laser fields, play a central role in modern ultrafast science and the exploration of electron behaviour. Recent work now shows that catastrophe theory can help optimize the properties of these pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 791
Permanent link to this record
 

 
Author Usmani, Imam; Clausen, Christoph; Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas
Title Heralded quantum entanglement between two crystals Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages 234-237
Keywords (up) fromIPMRAS
Abstract Quantum networks must have the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater, which allows the distance barrier of direct transmission of single photons to be overcome, provided remote quantum memories can be entangled in a heralded fashion. Here, we report the observation of heralded entanglement between two ensembles of rare-earth ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of crystals doped with rare-earth ions for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 793
Permanent link to this record
 

 
Author Hase, Muneaki; Katsuragawa, Masayuki; Constantinescu, Anca Monia; Petek, Hrvoje
Title Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue Pages 243–247
Keywords (up) fromIPMRAS
Abstract High-order nonlinear light–matter interactions in gases enable the generation of X-ray and attosecond light pulses, metrology and spectroscopy1. Optical nonlinearities in solid-state materials are particularly interesting for combining optical and electronic functions for high-bandwidth information processing2. Third-order nonlinear optical processes in silicon have been used to process optical signals with bandwidths greater than 1 GHz (ref. 2). However, fundamental physical processes for a silicon-based optical modulator in the terahertz bandwidth range have not yet been explored. Here, we demonstrate ultrafast phononic modulation of the optical index of silicon by irradiation with intense few-cycle femtosecond pulses. The anisotropic reflectivity modulation by the resonant Raman susceptibility at the fundamental frequency of the longitudinal optical phonon of silicon (15.6 THz) generates a frequency comb up to seventh order. All-optical >100 THz frequency comb generation is realized by harnessing the coherent atomic motion of the silicon crystalline lattice at its highest mechanical frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 794
Permanent link to this record
 

 
Author Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei
Title Experimental entanglement of six photons in graph states Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 2 Pages 91-95
Keywords (up) fromIPMRAS
Abstract Graph states-multipartite entangled states that can be represented by mathematical graphs-are important resources for quantum computation, quantum error correction, studies of multiparticle entanglement and fundamental tests of non-locality and decoherence. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states. We have created two important examples of graph states, a six-photon Greenberger-Horne-Zeilinger state, the largest photonic Schrödinger cat so far, and a six-photon cluster state, a state-of-the-art `one-way quantum computer'. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms or loss- and fault-tolerant one-way quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 796
Permanent link to this record
 

 
Author Ursin, R.; Tiefenbacher, F.; Schmitt-Manderbach, T.; Weier, H.; Scheidl, T.; Lindenthal, M.; Blauensteiner, B.; Jennewein, T.; Perdigues, J.; Trojek, P.; Ömer, B.; Fürst, M.; Meyenburg, M.; Rarity, J.; Sodnik, Z.; Barbieri, C.; Weinfurter, H.; Zeilinger, A.
Title Entanglement-based quantum communication over 144km Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 7 Pages 481-486
Keywords (up) fromIPMRAS
Abstract Quantum entanglement is the main resource to endow the field of quantum information processing with powers that exceed those of classical communication and computation. In view of applications such as quantum cryptography or quantum teleportation, extension of quantum-entanglement-based protocols to global distances is of considerable practical interest. Here we experimentally demonstrate entanglement-based quantum key distribution over 144km. One photon is measured locally at the Canary Island of La Palma, whereas the other is sent over an optical free-space link to Tenerife, where the Optical Ground Station of the European Space Agency acts as the receiver. This exceeds previous free-space experiments by more than an order of magnitude in distance, and is an essential step towards future satellite-based quantum communication and experimental tests on quantum physics in space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 797
Permanent link to this record
 

 
Author Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth; Braunstein, Samuel L.
Title Continuous-variable quantum cryptography using two-way quantum communication Type Journal Article
Year 2008 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 4 Issue 9 Pages 726-730
Keywords (up) fromIPMRAS
Abstract Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a `hardware solution' for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 798
Permanent link to this record
 

 
Author Zurek, Wojciech Hubert
Title Quantum Darwinism Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue 3 Pages 181-188
Keywords (up) fromIPMRAS
Abstract Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 799
Permanent link to this record
 

 
Author Shor, Peter W.
Title Quantum information theory: The bits don't add up Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue Pages 247 - 248
Keywords (up) fromIPMRAS
Abstract A counterexample to the 'additivity question', the most celebrated open problem in the mathematical theory of quantum information, casts doubt on the possibility of finding a simple expression for the information capacity of a quantum channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 800
Permanent link to this record
 

 
Author Hanneke, D.; Home, J. P.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J.
Title Realization of a programmable two-qubit quantum processor Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 1 Pages 13-16
Keywords (up) fromIPMRAS
Abstract The universal quantum computer is a device capable of simulating any physical system and represents a major goal for the field of quantum information science. In the context of quantum information, `universal' refers to the ability to carry out arbitrary unitary transformations in the system's computational space. Combining arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate provides a set of gates capable of achieving universal control of any number of qubits, provided that these gates can be carried out repeatedly and between arbitrary pairs of qubits. Although gate sets have been demonstrated in several technologies, they have so far been tailored towards specific tasks, forming a small subset of all unitary operators. Here we demonstrate a quantum processor that can be programmed with 15 classical inputs to realize arbitrary unitary transformations on two qubits, which are stored in trapped atomic ions. Using quantum state and process tomography, we characterize the fidelity of our implementation for 160 randomly chosen operations. This universal control is equivalent to simulating any pairwise interaction between spin-1/2 systems. A programmable multiqubit register could form a core component of a large-scale quantum processor, and the methods used here are suitable for such a device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 801
Permanent link to this record
 

 
Author Trabesinger, Andreas
Title Quantum mechanics: Shaken foundations Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue 12 Pages 863
Keywords (up) fromIPMRAS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 802
Permanent link to this record
 

 
Author Bialczak, R. C.; Ansmann, M.; Hofheinz, M.; Lucero, E.; Neeley, M.; O'Connell, A. D.; Sank, D.; Wang, H.; Wenner, J.; Steffen, M.; Cleland, A. N.; Martinis, J. M.
Title Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 6 Pages 409-413
Keywords (up) fromIPMRAS
Abstract Quantum gates must perform reliably when operating on standard input basis states and on complex superpositions thereof. Experiments using superconducting qubits have validated truth tables for particular implementations of, for example, the controlled-NOT gate, but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) to fully characterize the performance of a universal entangling gate between two superconducting qubits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction and ideally simultaneous single-shot measurement of output states. In recent work, it has been proposed to use QPT to probe noise properties and time dynamics of qubit systems and to apply techniques from control theory to create scalable qubit benchmarking protocols. We use QPT to measure the fidelity and noise properties of an entangling gate. In addition to demonstrating a promising fidelity, our entangling gate has an on-to-off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as QPT has previously been demonstrated only with single solid-state qubits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 803
Permanent link to this record