toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector Type Journal Article
  Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal  
  Volume 87 Issue Pages 053117 (1 to 5)  
  Keywords (down) SSPD, SNSPD, TCSPC, jitter  
  Abstract Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1077  
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
  Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 87 Issue 6 Pages 069901  
  Keywords (down) SSPD, SNSPD, TCSPC, jitter  
  Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).  
  Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27370512 Approved no  
  Call Number Serial 1810  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Y. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713827 (1 to 6)  
  Keywords (down) SSPD, SNSPD, superconducting single photon detector, ultra-thin superconducting films, optical fiber coupling, ready to use receiver  
  Abstract At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow ( 100 nm) and long ( 0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC= 5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm); dark counts rate ≤1 s-1; duration of voltage pulse ≤5 ns; jitter ≤40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1405  
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Divochiy, A.; Antipov, A.; Kaurova, N.; Seleznev, V.; Voronov, B.; Gol’tsman, G.; Pan, D.; Kitaygorsky, J.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast and high quantum efficiency large-area superconducting single-photon detectors Type Conference Article
  Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6583 Issue Pages 65830I (1 to 9)  
  Keywords (down) SSPD, SNSPD, superconducting NbN films, infrared single-photon detectors  
  Abstract We present our latest generation of superconducting single-photon detectors (SSPDs) patterned from 4-nm-thick NbN films, as meander-shaped  0.5-mm-long and  100-nm-wide stripes. The SSPDs exhibit excellent performance parameters in the visible-to-near-infrared radiation wavelengths: quantum efficiency (QE) of our best devices approaches a saturation level of  30% even at 4.2 K (limited by the NbN film optical absorption) and dark counts as low as 2x10-4 Hz. The presented SSPDs were designed to maintain the QE of large-active-area devices, but, unless our earlier SSPDs, hampered by a significant kinetic inductance and a nanosecond response time, they are characterized by a low inductance and GHz counting rates. We have designed, simulated, and tested the structures consisting of several, connected in parallel, meander sections, each having a resistor connected in series. Such new, multi-element geometry led to a significant decrease of the device kinetic inductance without the decrease of its active area and QE. The presented improvement in the SSPD performance makes our detectors most attractive for high-speed quantum communications and quantum cryptography applications.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1249  
Permanent link to this record
 

 
Author Mohan, Nishant; Minaeva, Olga; Goltsman, Gregory N.; Saleh, Mohammed F.; Nasr, Magued B.; Sergienko, Alexander V.; Saleh, Bahaa E.; Teich, Malvin C. url  doi
openurl 
  Title Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm Type Journal Article
  Year 2009 Publication Appl. Opt. Abbreviated Journal Appl. Opt.  
  Volume 48 Issue 20 Pages 4009–4017  
  Keywords (down) SSPD, SNSPD, SPAD  
  Abstract Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm. This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064 nm, via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 652  
Permanent link to this record
 

 
Author Fedder, H.; Oesterwind, S.; Wick, M.; Olbrich, F.; Michler, P.; Veigel, T.; Berroth, M.; Schlagmüller, M. url  doi
openurl 
  Title Characterization of electro-optical devices with low jitter single photon detectors – towards an optical sampling oscilloscope beyond 100 GHz Type Conference Article
  Year 2018 Publication ECOC Abbreviated Journal  
  Volume Issue Pages 1-3  
  Keywords (down) SSPD, SNSPD, SPAD  
  Abstract We showcase an optical random sampling scope that exploits single photon counting and apply it to characterize optical transceivers. We study single photon detectors with a jitter down to 40 ps. The method can be extended beyond 100 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 8535415 Serial 1198  
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R. url  doi
openurl 
  Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7009 Issue Pages 70090V (1 to 8)  
  Keywords (down) SSPD, SNSPD, single-photon detectors, superconductors, superconducting nanost  
  Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Sukhoivanov, I.A.; Svich, V.A.; Shmaliy, Y.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1413  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Slepneva, S.; Seleznev, V.; Chulkova, G.; Okunev, O.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting nanostructured detectors capable of single photon counting of mid-infrared optical radiation Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59570A (1 to 9)  
  Keywords (down) SSPD, SNSPD, single-photon detectors, superconductors, superconducting  
  Abstract We report on our progress in research and development of ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs were made of the 4-nm-thick NbN films with Tc 11 K, patterned as meander-shaped, 100-nm-wide strips, and covering an area of 10×10 μm2. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, a hotspot of excited electrons and redistribution of the biasing supercurrent, jointly produce a picosecond voltage transient signal across the superconducting nanostripe. The SSPDs are typically operated at 4.2 K, but their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by the optical absorption of our 4-nm-thick NbN film. With the wavelength increase of the incident photons,the QE of SSPDs decreases significantly, but even at the wavelength of 6 μm, the detector is able to count single photons and exhibits QE of about 10-2 %. The dark (false) count rate at 2 K is as low as 2x10-4 s,-1 which makes our detector essentially a background-limited sensor. The very low dark-count rate results in a noise equivalent power (NEP) below 10-18 WHz-1/2 for the mid-infrared range (6 μm). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for another, lower-Tc materials with a narrow superconducting gap and low quasiparticles diffusivity. The use of such superconductors should shift the cutoff wavelength below 10 μm.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1458  
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Latta, C.; Zwiller, V.; Pearlman, A.; Cross, A.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Verevkin, A.; Currie, M.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled quantum-communications receiver based on two NbN superconducting single-photon detectors Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5957 Issue Pages 59571K (1 to 10)  
  Keywords (down) SSPD, SNSPD, single-photon detectors, quantum communication, quantum cryptography, superconductors, infrared optical detectors  
  Abstract We present the design and performance of a novel, two-channel single-photon receiver, based on two fiber-coupled NbN superconducting single-photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders covering an area of 100 μm2 and are known for ultrafast and efficient counting of single, visible-to-infrared photons. Their operation has been explained within a phenomenological hot-electron photoresponse model. Our receiver is intended for fiber-based quantum cryptography and communication systems, operational at near-infrared (NIR) telecommunication wavelengths, λ = 1.3 μm and λ = 1.55 μm. Coupling between the NbN detector and a single-mode optical fiber was achieved using a specially designed, micromechanical photoresist ring, positioned directly over the SSPD active area. The positioning accuracy of the ring was below 1 μm. The receiver with SSPDs was placed (immersed) in a standard liquid-helium transport Dewar and kept without interruption for over two months at 4.2 K. At the same time, the optical fiber inputs and electrical outputs were kept at room temperature. Our best system reached a system quantum efficiency of up to 0.3 % in the NIR radiation range, with the detector coupling efficiency of about 30 %. The response time was measured to be about 250 ps and was limited by our read-out electronics. The measured jitter was close to 35 ps. The presented performance parameters show that our NIR single photon detectors are suitable for practical quantum cryptography and for applications in quantum-correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1459  
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; An, P.; Golikov, A.; Zubkova, E.; Ferrari, S.; Kahl, O.; Pernice, W.; Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Superconducting single-photon detector for integrated waveguide spectrometer Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04009  
  Keywords (down) SSPD, SNSPD, Si3N4 waveguides, waveguide spectrometer  
  Abstract We present our recent achievements in the development of an on-chip spectrometer consisting of arrayed waveguide grating made of Si3N4 waveguides and NbN superconducting single-photon detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: