toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Prokhodtsov, A.; An, P.; Kovalyuk, V.; Zubkova, E.; Golikov, A.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G. url  doi
openurl 
  Title Optimization of on-chip photonic delay lines for telecom wavelengths Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051052  
  Keywords (down) optical delay lines  
  Abstract In this work, we experimentally studied optical delay lines on silicon nitride platform for telecomm wavelength (1550 nm). We modeled the group delay time and fabricated spiral optical delay lines with different waveguide widths and radii as well as measured their transmission. For the half etched rib waveguides we achieved the losses in the range of 3 dB/cm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1196  
Permanent link to this record
 

 
Author Kramer, B.; Chen, C-C.; Volakis, J.D. openurl 
  Title The development of a mini-UWB antenna Type Journal Article
  Year 2004 Publication Measurement and Techniques Association Symposium Abbreviated Journal AMTA  
  Volume Issue Pages 6  
  Keywords (down) optical antennas; Ultra Wide Band; Spiral Antenna, Dielectric Loading  
  Abstract There is a great interest in the automotive and military sectors for small and broadband antennas that meet modern communication needs. These needs require ultra-wide bandwidth (>10:1) UWB antennas, such as the spiral antenna. However, the physical size at the low-frequency end typically becomes too large for practical applications. To reduce the size of the antenna, miniaturization techniques must be employed such as the use of high-contrast dielectric materials. Size reduction using high-contrast materials has been demonstrated for narrowband antennas, such as patch antennas, but not for broadband antennas to our knowledge. Therefore, the concept of miniaturizing a broadband spiral antenna using dielectric materials will be investigated experimentally and numerically.Issues that arise from dielectric loading such as impedance reduction will also be addressed. It will be shown using the results from these studies that there are practical limitations to the amount of miniaturization which can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 751  
Permanent link to this record
 

 
Author Heeres, R.W.; Dorenbos, S.N.; Koene, B.; Solomon, G.S.; Kouwenhoven, L.P.; Zwiller, V. doi  openurl
  Title On-Chip Single Plasmon Detection Type Journal Article
  Year 2010 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 10 Issue Pages 661-664  
  Keywords (down) optical antennas; SSPD; Single surface plasmons; superconducting detectors; semiconductor quantum dots; nanophotonics  
  Abstract Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 620  
Permanent link to this record
 

 
Author Brown, E. R.; Lee, A. W. M.; Navi, B. S.; Bjarnason, J. E. openurl 
  Title Characterization of a planar self-complementary square-spiral antenna in the THz region Type Journal Article
  Year 2006 Publication Microwave and Optical Technology Letters Abbreviated Journal Microwave Opt Technol Lett  
  Volume 48 Issue 3 Pages 524-529  
  Keywords (down) optical antennas; square spiral antenna; self complementary THz; photomixing; lens; method of moments; geometric optics; physical optics  
  Abstract This paper describes a compact, self-complementary square-spiral antenna on a GaAs substrate with a broadside high-directivity (~9 dB) frequency-independent pattern when coupled through a silicon hyperhemisphere. The driving-point resistance undulates between ~00 and 300Ω from 200 GHz to 1 THz—much higher than the 72Ω value from Booker's modified formula, but quite beneficial for coupling to high-impedance broadband devices  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 736  
Permanent link to this record
 

 
Author Xiaolong Hu; Holzwarth, C.W.; Masciarelli, D.; Dauler, E.A.; Berggren, K.K. openurl 
  Title Efficiently coupling light to superconducting nanowire single-photon detectors Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 19 Issue 3 Pages 336-340  
  Keywords (down) optical antennas; SNSPD  
  Abstract We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, (1) for the free-space coupling, the absorptance of the NbN nanowire for TM-polarized photons at the wavelength of 1550 nm can be as high as 96% by adding silver optical antennae; (2) for the fiber coupling, the absorptance of the NbN nanowire for TE-like-polarized photons can reach 76% including coupling efficiency at the wavelength of 1550 nm by adding a silicon nitride waveguide and an inverse-taper coupler.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 647  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: