|   | 
Details
   web
Records
Author Nikogosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V.
Title Effect of absorption on the efficiency of terahertz radiation generation in the metal waveguide partially filled with nonlinear crystal LiNbO3, DAST or ZnTe Type Journal Article
Year 2019 Publication J. Contemp. Phys. Abbreviated Journal J. Contemp. Phys.
Volume 54 Issue 1 Pages 97-104
Keywords (up) nonlinear crystal, THz, waveguide
Abstract The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1068-3372 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1289
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X.
Title High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Miscellaneous
Year 2012 Publication arXiv Abbreviated Journal arXiv
Volume 1108.5299 Issue Pages 1-23
Keywords (up) optical waveguides, waveguide SSPD, guantum photonics, jitter, detection efficiency
Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. High photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides which allows us to drastically increase the absorption length for incoming photons. When operating the detectors close to the critical current we achieve high on-chip single photon detection efficiency up to 91% at telecom wavelengths, with uncertainty dictated by the variation of the waveguide photon flux. We also observe remarkably low dark count rates without significant compromise of detection efficiency. Furthermore, our detectors are fully embedded in a scalable silicon photonic circuit and provide ultrashort timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 845
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths Type Journal Article
Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 5 Issue Pages 10941 (1 to 11)
Keywords (up) optical waveguides; waveguide integrated SSPD; waveguide SSPD; nanophotonics
Abstract Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present efficiencies close to unity at 1550nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noiseequivalent powers in the 10–19W/Hz–1/2 range and the timing jitter is as low as 35ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:26061283; PMCID:PMC4462017 Approved no
Call Number RPLAB @ kovalyuk @ Serial 946
Permanent link to this record
 

 
Author Zvagelsky, R. D.; Chubich, D. A.; Kolymagin, D. A.; Korostylev, E. V.; Kovalyuk, V. V.; Prokhodtsov, A. I.; Tarasov, A. V.; Goltsman, G. N.; Vitukhnovsky, A. G.
Title Three-dimensional polymer wire bonds on a chip: morphology and functionality Type Journal Article
Year 2020 Publication J. Phys. D: Appl. Phys. Abbreviated Journal J. Phys. D: Appl. Phys.
Volume 53 Issue 35 Pages 355102
Keywords (up) photonic wire bonds, PWB
Abstract Modern microchip-scale transceivers are capable of transmitting data at rates of the order of several terabits per second. In this regard, there is an urgent need to improve the interfaces connecting the chips and extend the bandpass of the interconnections. We use an approach combining silicon nitride nanophotonic circuits with 3D polymer waveguides fabricated by direct laser writing, which can be used as photonic interconnections or photonic wire bonds (PWB). These structures are designed, simulated, fabricated, and optimized for better light transmission at the telecommunication wavelength. An important part of this work is the study of the telecom signal transmission in a 3D polymer waveguide connecting two silicon nitride facing tapers. Two cases are considered: the tapers are one opposite the other or misaligned. Initially, the PWB shape was chosen to be Gaussian and then optimized: the top was circle-shaped and with the lower part still being Gaussian. Transmission losses were measured for both types of waveguides with different shapes. The idea of an optical multi-level crossing for photonic integrated circuits is also suggested as a solution to the problem of interconnections within a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1181
Permanent link to this record
 

 
Author Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords (up) PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1403
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01004 (1 to 2)
Keywords (up) QKD, SSPD, SNSPD
Abstract Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1327
Permanent link to this record
 

 
Author Bakhvalova, T.; Belkin, M. E.; Kovalyuk, V. V.; Prokhodtcov, A. I.; Goltsman, G. N.; Sigov, A. S.
Title Studying key principles for design and fabrication of silicon photonic-based beamforming networks Type Conference Article
Year 2019 Publication PIERS-Spring Abbreviated Journal PIERS-Spring
Volume Issue Pages 745-751
Keywords (up) silicon photonics, TriPleX platform
Abstract In the paper, we address key principles for computer-aided design and fabrication of silicon-photonics-based optical beamforming network selecting the optimal approach by simulation and experimental results. To clarify the consideration, the study is conducted on the example of a widely used binary switchable silicon-nitride optical beamforming network based on TriPleX platform. Comparison of simulation results and experimental studies of the prototype shows that the relative error due to technological imperfections does not exceed 3%. According to the estimation, such an error introduces insignificant distortion in the radiation pattern of the referred antenna array.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 9017646 Serial 1186
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Yu Kuntsevich, A.; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.
Title Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices Type Journal Article
Year 2018 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 29 Issue 24 Pages 245204 (1 to 8)
Keywords (up) single layer graphene, graphene nanoribbons
Abstract We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.
Address Physics Department, Moscow State University of Education, Moscow 119991, Russia. National Research Center 'Kurchatov Institute', 123182, Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:29553479 Approved no
Call Number Serial 1308
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P.
Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications
Volume Issue Pages 113-125
Keywords (up) SIS mixer, SIR, THz imaging
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-8828-1 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1368
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X.
Title High speed travelling wave single-photon detectors with near-unity quantum efficiency Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 1-14
Keywords (up) SPD
Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. Close-to-unity photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides and achieve single photon detection efficiency up to 94% at telecom wavelengths. Our detectors are fully embedded in a scalable, low loss silicon photonic circuit and provide ultrashort timing jitter of 18ps at multi-GHz detection rates. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1108.5299 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 661
Permanent link to this record