|   | 
Details
   web
Records
Author Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 103 Issue Pages 10002 (1 to 2)
Keywords (down) SSPD, SNSPD, QKD
Abstract Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1352
Permanent link to this record
 

 
Author Ejrnaes, M.; Cristiano, R.; Quaranta, O.; Pagano, S.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol’tsman, G.
Title A cascade switching superconducting single photon detector Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 91 Issue 26 Pages 262509 (1 to 3)
Keywords (down) SSPD, SNSPD, parallel-wire
Abstract We have realized superconducting single photon detectors with reduced inductance and increased signal pulse amplitude. The detectors are based on a parallel connection of ultrathin NbN nanowires with a common bias inductance. When properly biased, an absorbed photon induces a cascade switch of all the parallel wires generating a signal pulse amplitude of 2mV. The parallel wire configuration lowers the detector inductance and reduces the response time well below 1ns.

This work was performed in the framework of the EU project “SINPHONIA” NMP4-CT-2005-016433.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1418
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Erratum: “Single photon experiments at telecom wavelengths using nanowire superconducting detectors” [Appl. Phys. Lett. 91, 031106 (2007)] Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 8 Pages 089901
Keywords (down) SSPD, SNSPD, erratum
Abstract A calculation error was made in the original publication of this letter. The error was in the calculation of the noise equivalent power (NEP) values for the avalanche photodiode detector (APD) and the superconducting single photon detector (SSPD), the incorrect values were plotted on the right axis in Fig. 1(b). The correct NEP values were calculated with the same equation reported in the original letter and the revised Fig. 1(b) is shown below. The other conclusions of the paper remain unaltered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1395
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 91 Issue 3 Pages 031106 (1 to 3)
Keywords (down) SSPD, SNSPD, APD
Abstract The authors report fiber-coupled superconducting single-photon detectors with specifications that exceed those of avalanche photodiodes, operating at telecommunication wavelength, in sensitivity, temporal resolution, and repetition frequency. The improved performance is demonstrated by measuring the intensity correlation function g(2)(τ) of single-photon states at 1300nm produced by single semiconductor quantum dots.

This work was supported by Swiss National Foundation through the “Professeur borsier” and NCCR Quantum Photonics program, FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433), IP “QAP” (Contract No. 15848), NOE “ePIXnet,” and the Italian MIUR-FIRB program.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Erratum: 1395 Approved no
Call Number Serial 1396
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J.
Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.
Volume 13 Issue 4 Pages 934-943
Keywords (down) SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-260X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1424
Permanent link to this record