toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zolotov, P.; Divochiy, A.; Korneeva, Yu.; Vakhtomin, Yu.; Seleznev, V.; Smirnov, K. openurl 
  Title Capability investigation of superconducting single-photon detectors, optimized for 800–1200 nm spectrum range Type Miscellaneous
  Year 2015 Publication 3th ICQT Abbreviated Journal 3th ICQT  
  Volume Issue Pages  
  Keywords (down) SSPD, SNSPD  
  Abstract  
  Address Hotel Ukraina (Radisson), Moscow  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Poster Approved no  
  Call Number Serial 1253  
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Seleznev, V.; Morozov, P.; Smirnov, K. url  doi
openurl 
  Title High-efficiency single-photon detectors based on NbN films Type Miscellaneous
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) SSPD, SNSPD  
  Abstract We present our resent results in development and testing of Superconducting Single-Photon Detectors (SSPD) with detection efficiencies greater than 85%. High values of obtained results are assigned to proposed design of the detector with integrated resonator structure, including two-layer optical cavity and anti-reflective coating (ARC).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Poster Approved no  
  Call Number Serial 1254  
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Morozov, P.; Seleznev, V.; Smirnov, K url  openurl
  Title Development of fast and high-effective single-photon detector for spectrum range up to 2.3 μm Type Conference Article
  Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN  
  Volume Issue Pages 439-440  
  Keywords (down) SSPD, SNSPD  
  Abstract We present the results of development and testing of the single-photon-counting system operating in the wide spectrum rane up to 2.3 mcm. We managed to increase system detection efficiency up to 60% in the range of 1.7-2.3 mcm optimisation of the fabrication methods of superconducting single-photon detectors and application of the single-mode fiber with enlarged core diameter.  
  Address St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1255  
Permanent link to this record
 

 
Author Minaeva, O.; Divochiy, A.; Korneev, A.; Sergienko, A. V.; Goltsman, G. N. url  doi
openurl 
  Title High speed infrared photon counting with photon number resolving superconducting single-photon detectors (SSPDs) Type Conference Article
  Year 2009 Publication CLEO/Europe – EQEC Abbreviated Journal CLEO/Europe – EQEC  
  Volume Issue Pages  
  Keywords (down) SSPD, SNSPD  
  Abstract A review of development and characterization of the nanostructures consisting of several meander sections, all connected in parallel was presented. Such geometry leads to a significant decrease of the kinetic inductance, without a decrease of the SSPD active area. A new type of SSPDs possess the QE of large-active- area devices, but, simultaneously, allows achieving short response times and the GHz-counting rate. This new generation of superconducting detectors has another significant advantage for quantum key distribution, they have a photon number resolving capability and can distinguish more photons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1399  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 61 Issue Pages 1081-1085  
  Keywords (down) SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. url  doi
openurl 
  Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2-3 Pages 334-344  
  Keywords (down) PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN  
  Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 701  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G. url  doi
openurl 
  Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713828 (1 to 5)  
  Keywords (down) PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared  
  Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/12.818079 Serial 1241  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Divochiy, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.; Lagoudakis, K.G.; Benkahoul, M.; Lévy, F.; Fiore, A. url  isbn
openurl 
  Title Superconducting nanowire photon number resolving detector at telecom wavelength Type Conference Article
  Year 2008 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages Qmj1 (1 to 2)  
  Keywords (down) PNR SSPD; SNSPD; Detectors; Infrared; Low light level; Diode lasers; Photons; Scanning electron microscopy; Superconductors; Ti:sapphire lasers  
  Abstract We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-55752-859-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Marsili:08 Serial 1243  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol'tsman, G. url  doi
openurl 
  Title New advanced generation of superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue Pages 012307 (1 to 6)  
  Keywords (down) PNR SSPD; SNSPD  
  Abstract We present our latest generation of ultrafast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). We have developed, fabricated and tested a multi-sectional design of NbN nanowire structures. The novel SSPD structures consist of several meander sections connected in parallel, each having a resistor connected in series. The novel SSPDs combine 10 μm × 10 μm active areas with a low kinetic inductance and PNR capability. That resulted in a significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector's response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performances of the PNR SSPDs. The PNR SSPDs are perfectly suited for fibreless free-space telecommunications, as well as for ultrafast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1245  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. url  openurl
  Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum  
  Volume Issue Pages  
  Keywords (down) PNR SSPD, SNSPD  
  Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no  
  Call Number RPLAB @ sasha @ korneevsuperconducting Serial 1046  
Permanent link to this record
 

 
Author Moshkova, M. A.; Divochiy, A. V.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V. url  isbn
openurl 
  Title Characterization of topologies of superconducting photon number resolving detectors Type Conference Article
  Year 2019 Publication Proc. 8th Int. Conf. Photonics and Information Optics Abbreviated Journal Proc. 8th Int. Conf. Photonics and Information Optics  
  Volume Issue Pages 465-466  
  Keywords (down) PNR SSPD  
  Abstract Comparative analysis for different topologies of superconducting single-photon detectors with ability to resolve up to 4 photons in a short pulse of IR radiation has been carry out. It was developed the detector with a system detection efficiency of ~ 85 % at λ = 1550 nm. The possibility of using such detector to restore photon statistics of a pulsed radiation source was demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-7262-2536-4 Medium  
  Area Expedition Conference  
  Notes http://fioconf.mephi.ru/files/2018/12/FIO2019-Sbornik.pdf Approved no  
  Call Number Serial 1803  
Permanent link to this record
 

 
Author Zolotov, P.; Semenov, A.; Divochiy, A.; Goltsman, G. url  doi
openurl 
  Title A comparison of VN and NbN thin films towards optimal SNSPD efficiency Type Journal Article
  Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 31 Issue 5 Pages 1-4  
  Keywords (down) NbN SSPD, SNSPD, WSi  
  Abstract Based on early phenomenological ideas about the operation of superconducting single-photon detectors (SSPD or SNSPD), it was expected that materials with a lower superconducting gap should perform better in the IR range. The plausibility of this concept could be checked using two popular SSPD materials – NbN and WSi films. However, these materials differ strongly in crystallographic structure (polycrystalline B1 versus amorphous), which makes their dependence on disorder different. In our work we present a study of the single-photon response of SSPDs made from two disordered B1 structure superconductors – vanadium nitride and niobium nitride thin films. We compare the intrinsic efficiency of devices made from films with different sheet resistance values. While both materials have a polycrystalline structure and comparable diffusion coefficient values, VN films show metallic behavior over a wide range of sheet resistance, in contrast to NbN films with an insulator-like temperature dependence of resistivity, which may be partially due to enhanced Coulomb interaction, leading to different starting points for the normal electron density of states. The results show that even though VN devices are more promising in terms of theoretical predictions, their optimal performance was not reached due to lower values of sheet resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1223  
Permanent link to this record
 

 
Author Sclafani, M.; Marksteiner, M.; Keir, F. M. L.; Divochiy, A.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title Sensitivity of a superconducting nanowire detector for single ions at low energy Type Journal Article
  Year 2012 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 23 Issue 6 Pages 065501 (1 to 5)  
  Keywords (down) NbN SSPD, SNSPD, superconducting single ion detector, SSID, SNSID  
  Abstract We report on the characterization of a superconducting nanowire detector for ions at low kinetic energies. We measure the absolute single-particle detection efficiency eta and trace its increase with energy up to eta = 100%. We discuss the influence of noble gas adsorbates on the cryogenic surface and analyze their relevance for the detection of slow massive particles. We apply a recent model for the hot-spot formation to the incidence of atomic ions at energies between 0.2 and 1 keV. We suggest how the differences observed for photons and atoms or molecules can be related to the surface condition of the detector and we propose that the restoration of proper surface conditions may open a new avenue for SSPD-based optical spectroscopy on molecules and nanoparticles.  
  Address Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22248823 Approved no  
  Call Number Serial 1380  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G. url  doi
openurl 
  Title Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 1-2 Pages 591-596  
  Keywords (down) NbN SSPD, SNSPD  
  Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1244  
Permanent link to this record
 

 
Author Zolotov, P. I.; Semenov, A. V.; Divochiy, A. V.; Goltsman, G. N.; Romanov, N. R.; Klapwijk, T. M. url  doi
openurl 
  Title Dependence of photon detection efficiency on normal-state sheet resistance in marginally superconducting films of NbN Type Journal Article
  Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 31 Issue 5 Pages 1-5  
  Keywords (down) NbN SSPD, SNSPD  
  Abstract We present an extensive set of data on nanowire-type superconducting single-photon detectors based on niobium-nitride (NbN) to establish the empirical correlation between performance and the normal-state resistance per square. We focus, in particular, on the bias current, compared to the expected depairing current, needed to achieve a near-unity detection efficiency for photon detection. The data are discussed within the context of a model in which the photon energy triggers the movement of vortices i.e. superconducting dissipation, followed by thermal runaway. Since the model is based on the non-equilibrium theory for conventional superconductors deviations may occur, because the efficient regime is found when NbN acts as a marginal superconductor in which long-range phase coherence is frustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1222  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: