toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Santhanam, P.; Wind, S.; Prober, D. E. openurl 
  Title Localization, superconducting fluctuations, and superconductivity in thin films and narrow wires of aluminum Type Journal Article
  Year 1987 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 35 Issue 7 Pages 3188-3206  
  Keywords Al films; electron-phonon scattering; electron-electron scattering; Disordered structures; amorphous and glassy solids, Relaxation times and mean free paths, Galvanomagnetic and other magnetotransport effects  
  Abstract We report a comprehensive set of experiments on wide and narrow thin-film strips of aluminum which test the predictions of recent localization theory. The experiments on wide films in the two-dimensional regime confirm the theoretical predictions and also yield insight into inelastic mechanisms and spin-orbit scattering rates. Our extension of the existing theory for one-dimensional systems to include spin-orbit scattering and Maki-Thompson superconducting fluctuations is verified by the experiments. We find clear evidence for one-dimensional localization, with inferred inelastic rates identical to those in two-dimensional films. The prediction of the localization theory for a dimensional crossover from two-dimensional to one-dimensional behavior is also confirmed. We have reanalyzed the results of some previous experiments on thin films and narrow wires in light of these results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 757  
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. url  openurl
  Title High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Miscellaneous
  Year 2012 Publication arXiv Abbreviated Journal arXiv  
  Volume 1108.5299 Issue Pages 1-23  
  Keywords optical waveguides, waveguide SSPD, guantum photonics, jitter, detection efficiency  
  Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. High photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides which allows us to drastically increase the absorption length for incoming photons. When operating the detectors close to the critical current we achieve high on-chip single photon detection efficiency up to 91% at telecom wavelengths, with uncertainty dictated by the variation of the waveguide photon flux. We also observe remarkably low dark count rates without significant compromise of detection efficiency. Furthermore, our detectors are fully embedded in a scalable silicon photonic circuit and provide ultrashort timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 845  
Permanent link to this record
 

 
Author Lee, B. G.; Doany, F. E.; Assefa, S.; Green, W.; Yang, M.; Schow, C. L.; Jahnes, C. V.; Zhang, S.; Singer, J.; Kopp, V. I.; Kash, J. A.; Vlasov, Y. A. openurl 
  Title 20-μm-pitch eight-channel monolithic fiber array coupling 160 Gb/s/channel to silicon nanophotonic chip Type Conference Article
  Year 2010 Publication Conf. OFC/NFOEC Abbreviated Journal Conf. OFC/NFOEC  
  Volume Issue Pages 1-3  
  Keywords spot size converters, SSC, optical waveguides, optical fiber waveguides, ultra-dense silicon waveguide arrays, silicon waveguides, waveguide arrays, from chiralphotonics  
  Abstract A multichannel tapered coupler interfacing standard 250-μm-pitch low-NA polarization-maintaining fiber arrays with ultra-dense 20-μm-pitch high-NA silicon waveguides is designed, fabricated, and tested, demonstrating coupling losses below 1 dB and injection bandwidths of 160 Gb/s/channel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on optical fiber communication, collocated national fiber optic engineers conference  
  Notes Approved no  
  Call Number Serial 852  
Permanent link to this record
 

 
Author Kopp, Victor I.; Churikov, Victor M.; Zhang, Guoyin; Singer, Jonathan; Draper, Christopher W.; Chao, Norman; Neugroschl, Daniel; Genack, Azriel Z. openurl 
  Title Chiral fiber gratings: perspectives and challenges for sensing applications Type Conference Article
  Year 2007 Publication Proceedings of Third european workshop on optical fibre sensors Abbreviated Journal Proc. 3rd European Workshop on Opt. Fibre Sensors  
  Volume 6619 Issue Pages 66190B-(1-8)  
  Keywords optical fiber gratings, chiral fiber gratings applications, chiral gratings applications, from chiralphotonics  
  Abstract Chiral fiber gratings are produced in a microforming process in which optical fibers with noncircular or nonconcentric cores are twisted as they pass though a miniature oven. Periodic glass structures as stable as the glass material itself are produced with helical pitch that ranges from under a micron to hundreds of microns. The geometry of the fiber cross section determines the symmetry of the resulting structure which in turn determines its polarization selectivity. Single helix structures are polarization insensitive while double helix gratings interact only with a single optical polarization. Both single and double helix gratings may act as a fiber long period grating, coupling the core and cladding modes. The coupling is manifested in a series of narrow dips in the transmission spectrum. The dip position is sensitive to fiber elongation, twist and temperature, and to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing pressure, temperature and liquid levels is investigated. Polarization insensitive single helix silica glass gratings display excellent stability up to temperatures of 6000C, while a pressure sensor with dynamic range of nearly 40 dB is demonstrated in polarization selective double helix gratings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 855  
Permanent link to this record
 

 
Author Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M. url  doi
openurl 
  Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
  Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 76 Issue 19 Pages 2752-2754  
  Keywords NbN HEB detectors, two-temperature model, IF bandwidth  
  Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: