|   | 
Details
   web
Records
Author Sergeev, A.; Mitin, V.
Title Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials Type Journal Article
Year 2000 Publication Phys. Rev. B. Abbreviated Journal Phys. Rev. B.
Volume 61 Issue 9 Pages 6041-6047
Keywords disordered conductors, scattering potential, electron-phonon interaction
Abstract Employing the Keldysh diagram technique, we calculate the electron-phonon energy relaxation rate in a conductor with the vibrating and static δ-correlated random electron-scattering potentials. If the scattering potential is completely dragged by phonons, this model yields the Schmid’s result for the inelastic electron-scattering rate τ−1e−ph. At low temperatures the effective interaction decreases due to disorder, and τ−1e−ph∝T4l (l is the electron mean-free path). In the presense of the static potential, quantum interference of numerous scattering processes drastically changes the effective electron-phonon interaction. In particular, at low temperatures the interaction increases, and τ−1e−ph∝T2/l. Along with an enhancement of the interaction, which is observed in disordered metallic films and semiconducting structures at low temperatures, the suggested model allows us to explain the strong sensitivity of the electron relaxation rate to the microscopic quality of a particular film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 307
Permanent link to this record
 

 
Author Gershenson, M. E.; Gong, D.; Sato, T.; Karasik, B. S.; Sergeev, A. V.
Title Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures Type Journal Article
Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 79 Issue Pages 2049-2051
Keywords HEB detector, FIR, far infrared
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ heb_eph_interaction_Gershenzon Serial 315
Permanent link to this record
 

 
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol'tsman, G.
Title One-dimensional resistive states in quasi-two-dimensional superconductors Type Journal Article
Year 2007 Publication arXiv:0709.0709v1 [cond-mat.supr-con] Abbreviated Journal
Volume Issue Pages 1-11
Keywords
Abstract We investigate competition between one- and two-dimensional topological excitations – phase slips and vortices – in formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature T(C0). The widths w = 100 nm of our ultrathin NbN samples is substantially larger than the Ginzburg-Landau coherence length ξ = 4nm and the fluctuation resistivity above T(C0) has a two-dimensional character. However, our data shows that the resistivity below T(C0) is produced by one-dimensional excitations, – thermally activated phase slip strips (PSSs) overlapping the sample cross-section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current/temperature variations. Measuring the resistivity within seven orders of magnitude, we find that the quantum phase slips can only be essential below this level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 948
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Heating of electrons in a superconductor in the resistive state by electromagnetic radiation Type Journal Article
Year 1984 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 59 Issue 2 Pages 442-450
Keywords Nb HEB
Abstract The effect of heating of electrons relative to phonons is observed and investigated in a superconducting film that is made resistive by current and by an external magnetic field. The effect is manifested by an increase of the film resistance under the influence of the electromagnetic radiation, and is not selective in the frequency band 10^10-10^15 Hz. The independence of the effect of frequency under conditions of strong scattering by static defects is attributed to the decisive role of electron-electron collisions in the distribution function. The experimentally obtained characteristic time of resistance variation near the superconducting transition corresponds to the relaxation time of the order parameter, while at lower temperatures and fields it corresponds to the time of the inelastic electron-phonon interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ phisix @ Serial 983
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semyonov, A. D.; Sergeev, A. V.
Title Heating of electrons in superconductor in the resistive state due to electromagnetic radiation Type Journal Article
Year 1984 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 50 Issue 3 Pages 207-212
Keywords Nb HEB
Abstract The effect of heating electrons with respect to phonons in a thin superconducting film driven into the resistive state by the current and the external magnetic field has been observed and investigated. This effect caused by the electromagnetic radiation is manifested in the increased resistance of the film and is not selective over the frequency range from 1010 to 1015 Hz. That the effect is frequency independent under the conditions of strong electron scattering caused by static defects is explained by the decisive role of electron -electron collisions in forming the distribution function. The characteristic time of resistance change, obtained experimentally, corresponds to the relaxation time of the order parameter near the superconducting transition and to the relaxation time of the nonelastic electron-phonon interaction at lower temperatures and in lower magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (down) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1709
Permanent link to this record