toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zwiller, Valery; Benson, Oliver openurl 
  Title Quantum nature of light measured with a single detector Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 7  
  Keywords  
  Abstract We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photodetectors, giving the false impression that the beam splitter is required. Our work results in a major simplification of the widely used photon-correlation techniques with applications ranging from quantum information processing to single-molecule detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1107.1353 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 667  
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore, A. openurl 
  Title Waveguide single-photon detectors for integrated quantum photonic circuits Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 11  
  Keywords SPD  
  Abstract he generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1108.5107 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 668  
Permanent link to this record
 

 
Author Scheel, Stefan openurl 
  Title Single-photon sources–an introduction Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal  
  Volume 56 Issue 2-3 Pages 141-160  
  Keywords LOQC; quantum cryptography; QKD  
  Abstract This review surveys the physical principles and recent developments in manufacturing single-photon sources. Special emphasis is placed on important potential applications such as linear optical quantum computing (LOQC), quantum key distribution (QKD) and quantum metrology that drive the development of these sources of single photons. We discuss the quantum-mechanical properties of light prepared in a quantum state of definite photon number and compare it with coherent light that shows a Poissonian distribution of photon numbers. We examine how the single-photon fidelity directly influences the ability to transmit secure quantum bits over a predefined distance. The theoretical description of modified spontaneous decay, the main principle behind single-photon generation, provides the background for many experimental implementations such as those using microresonators or pillar microcavities. The main alternative way to generate single photons using postselection of entangled photon pairs from parametric down-conversion, will be discussed. We concentrate on describing the underlying physical principles and we will point out limitations and open problems associated with single-photon production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 669  
Permanent link to this record
 

 
Author Karpowicz, Nicholas; Lu, Xiaofei; Zhang, X.-C. openurl 
  Title Terahertz gas photonics Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal  
  Volume 56 Issue 10 Pages 1137-1150  
  Keywords  
  Abstract The underlying physics of the generation and detection of terahertz (THz) waves in gases are described. The THz wave generation process takes place in two steps: asymmetric gas ionization by two-frequency laser fields, followed by interaction of the ionized electron wave packets with the surrounding medium, producing an intense ‘echo' with tunable spectral content. In order to clarify the physical picture at the moment of ionization, the laser–atom interaction is treated through solution of the time-dependent Schrödinger equation, yielding an ab initio understanding of the release of the electron wave packets. The second step, where the electrons interact with the surrounding plasma is treated analytically. The resulting pressure dependence of the THz radiation is explored in detail. The THz wave detection process is shown to be the result of four-wave mixing, leading to analytical expressions of the signal obtained which allow for improved optimization of systems that exploit these effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 670  
Permanent link to this record
 

 
Author Polyakov, Sergey V.; Migdalla, Alan L. openurl 
  Title Quantum radiometry Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal  
  Volume 56 Issue 9 Pages 1045-1052  
  Keywords  
  Abstract We review radiometric techniques that take advantage of photon counting and stem from the quantum laws of nature. We present a brief history of metrological experiments and review the current state of experimental quantum radiometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 671  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: