toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pile, David openurl 
  Title How many bits can a photon carry Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 1 Pages 14-15  
  Keywords fromIPMRAS  
  Abstract Quantum physics offers a way to enhance the amount of information a photon can carry, with potential applications in optical communication, lithography, metrology and imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) View from... OSA Frontiers in Optics 2011: How many bits can a photon carry? Approved no  
  Call Number RPLAB @ gujma @ Serial 780  
Permanent link to this record
 

 
Author Bonifas, Andrew P.; McCreery, Richard L. openurl 
  Title ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue 8 Pages 612–617  
  Keywords  
  Abstract Virtually all types of molecular electronic devices depend on electronically addressing a molecule or molecular layer through the formation of a metallic contact. The introduction of molecular devices into integrated circuits will probably depend on the formation of contacts using a vapour deposition technique, but this approach frequently results in the metal atoms penetrating or damaging the molecular layer. Here, we report a method of forming 'soft' metallic contacts on molecular layers through surface-diffusion-mediated deposition, in which the metal atoms are deposited remotely and then diffuse onto the molecular layer, thus eliminating the problems of penetration and damage. Molecular junctions fabricated by this method exhibit excellent yield (typically >90%) and reproducibility, and allow examination of the effects of molecular-layer structure, thickness and contact work function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 682  
Permanent link to this record
 

 
Author Freer, Erik M.; Grachev, Oleg; Duan, Xiangfeng; Martin, Samuel; Stumbo, David P. openurl 
  Title High-yield self-limiting single-nanowire assembly with dielectrophoresis Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue 7 Pages 525–530  
  Keywords  
  Abstract Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 683  
Permanent link to this record
 

 
Author Konstantatos, Gerasimos; Sargent, Edward H. openurl 
  Title Nanostructured materials for photon detection Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue 6 Pages 391–400  
  Keywords  
  Abstract The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 684  
Permanent link to this record
 

 
Author Sahu, Mitrabhanu; Bae, Myung-Ho; Rogachev, Andrey; Pekker, David; Wei, Tzu-Chieh; Shah, Nayana; Goldbart, Paul M.; Bezryadin, Alexey doi  openurl
  Title Individual topological tunnelling events of a quantum field probed through their macroscopic consequences Type Journal Article
  Year 2009 Publication Nature Phys. Abbreviated Journal Nature Phys.  
  Volume 5 Issue Pages 503-508  
  Keywords phase slips, superconducting nanowires  
  Abstract Phase slips are topological fluctuations that carry the superconducting order-parameter field between distinct current-carrying states. Owing to these phase slips, superconducting nanowires acquire electrical resistance. In such wires, it is well known that at higher temperatures phase slips occur through the process of thermal barrier-crossing by the order-parameter field. At low temperatures, the general expectation is that phase slips should proceed through quantum tunnelling events, which are known as quantum phase slips. However, resistive measurements have produced evidence both for and against the occurrence of quantum phase slips. Here, we report evidence for the observation of individual quantum phase-slip events in homogeneous ultranarrow wires at high bias currents. We accomplish this through measurements of the distribution of switching currents for which the width exhibits a rather counter-intuitive, monotonic increase with decreasing temperature. Importantly, measurements show that in nanowires with larger critical currents, quantum fluctuations dominate thermal fluctuations up to higher temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Recommended by Klapwijk Approved no  
  Call Number Serial 928  
Permanent link to this record
 

 
Author Li, Mo; Pernice, W. H. P.; Xiong, C.; Baehr-Jones, T.; Hochberg, M.; Tang, H. X. url  doi
openurl 
  Title Harnessing optical forces in integrated photonic circuits Type Journal Article
  Year 2008 Publication Nature Abbreviated Journal Nature  
  Volume 456 Issue 7221 Pages 480-484  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number RPLAB @ s @ Serial 425  
Permanent link to this record
 

 
Author Taylor, F.W. url  doi
openurl 
  Title Atmospheric physics: Natural lasers on Venus and Mars Type Journal Article
  Year 1983 Publication Nature Abbreviated Journal Nature  
  Volume 306 Issue 5944 Pages 640-640  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 457  
Permanent link to this record
 

 
Author Kawano, Yukio; Ishibashi, Koji url  doi
openurl 
  Title An on-chip near-field terahertz probe and detector Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 2 Issue 10 Pages 618-621  
  Keywords single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications  
  Abstract The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4885 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 570  
Permanent link to this record
 

 
Author Wei, Jian; Olaya, David; Karasik, Boris S.; Pereverzev, Sergey V.; Sergeev, Andrei V.; Gershenson, Michael E. url  doi
openurl 
  Title Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
  Year 2008 Publication Nature Nanotechnology Abbreviated Journal Nature Nanotech  
  Volume 3 Issue 8 Pages 496-500  
  Keywords HEB, Ti/NbN, single terahertz photons, detection  
  Abstract The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;

second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 576  
Permanent link to this record
 

 
Author Takesue, Hiroki; Nam, Sae Woo; Zhang, Qiang; Hadfield, Robert H.; Honjo, Toshimori; Tamaki, Kiyoshi; Yamamoto, Yoshihisa doi  openurl
  Title Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors Type Journal Article
  Year 2007 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 1 Issue Pages 343-348  
  Keywords quantum cryptography, SSPD, QKD, DSP  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number RPLAB @ akorneev @ Serial 609  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: