toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ekstrom H.; Karasik B. S.; Kollberg E.L.; Yngvesson K.S. openurl 
  Title Conversion Gain and Noise of Niobium Superconducting Hot-Electron-Mixers Type Journal Article
  Year 1995 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 43 Issue Pages 938-947  
  Keywords  
  Abstract A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3-dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The require ments on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demon-strate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3-dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number RPLAB @ atomics90 @ Serial 964  
Permanent link to this record
 

 
Author Ptitsina, N. G.; Chulkova, G. M.; Gershenzon, E. M. openurl 
  Title Influence of the interference of electron-phonon and electron-impurity scattering on the conductivity of unordered Nb films Type Journal Article
  Year 1995 Publication JETP Abbreviated Journal JETP  
  Volume 80 Issue 5 Pages 960-964  
  Keywords  
  Abstract The temperature dependence of the resistivity of Nb thin films has been studied at T=4.2-300 K. It has been shown that quantum interference between electron-phonon and electron-impurity scattering determines the temperature dependence of the resistivity of the films investigated over a broad temperature range. The magnitude of the contribution of the electron-phonon-impurity,interference is described satisfactorily by the theory developed by Reizer and Sergeev {Zh. Eksp. Teor. Fiz. 92,2291 (1987) [Sov. Phys. JETP 65, 1291 (1987)l). The interaction constants of electrons with longitudinal and transverse phonons in Nb films have been determined for the first time by comparing the experimental data with the theory. The values of the constants obtained are consistent with the data on the inelastic electron-phonon scattering times in the films investigated. The contribution of the transverse phonons is dominant both in the interference correction to the resistivity and in the electron energy relaxation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number RPLAB @ phisix @ Serial 989  
Permanent link to this record
 

 
Author Zorin, M.; Gol'tsman, G.N.; Karasik, B.S.; Elantev, A.I.; Gershenzon, E.M.; Lindgren, M.; Danerud, M.; Winkler, D. url  doi
openurl 
  Title Optical mixing in thin YBa2Cu3O7-x films Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 2431-2434  
  Keywords YBCO HTS HEB mixers  
  Abstract High quality, j/sub c/ (77 K)>10/sup 6/ A/cm/sup 2/, epitaxial YBa2Cu3O7-x films of 50 nm thickness were patterned into ten parallel 1 /spl mu/m wide strips. The film structure was coupled to a single-mode fiber. Mixer response was obtained at 0.78 /spl mu/m using laser frequency modulation and an optical delay line. Using two semiconductor lasers at 1.55 /spl mu/m wavelength the beating signal was used to measure the photoresponse up to 18 GHz. Nonequilibrium photoresponse in the resistive state of the superconductor was observed. Bolometric response dominates up to 3 GHz, after which the nonequilibrium response is constant up to the frequency limit of our registration system. Using an electron heating model the influence of different thermal processes on the conversion loss has been analyzed. Ways of increasing the sensitivity are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1619  
Permanent link to this record
 

 
Author Karasik, B. S.; Milostnaya, I. I.; Zorin, M. A.; Elantev, A. I.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title High speed current switching of homogeneous YBaCuO film between superconducting and resistive states Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 3042-3045  
  Keywords YBCO HTS HEB switches  
  Abstract Transitions of thin structured YBaCuO films from superconducting (S) to normal (N) state and back induced by a supercritical current pulse has been studied. A subnanosecond stage in the film resistance dynamic has been observed. A more gradual (nanosecond) ramp in the time dependence of the resistance follows the fast stage. The fraction of the film resistance which is attained during the fast S-N stage rises with the current amplitude. Subnanosecond N-S switching is more pronounced for smaller amplitudes of driving current and for shorter pulses. The phenomena observed are viewed within the framework of an electron heating model. The expected switching time and repetition rate of an optimized current controlling device are estimated to be 1-2 ps and 80 GHz respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1620  
Permanent link to this record
 

 
Author Gol'tsman, G.; Kouminov, P.; Goghidze, I.; Gershenzon, E. url  doi
openurl 
  Title Nonequilibrium kinetic inductive response of YBCO thin films to low power laser pulses Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 2591-2594  
  Keywords YBCO HTS KID  
  Abstract We have discovered a transient nonequilibrium kinetic inductive voltage response of YBCO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 /spl mu/m and 1.54 /spl mu/m wavelength. By increasing the sensitivity of the read-out system with 100 ps resolution time and diminishing the light intensity (fluence 0.1-2 /spl mu/J/cm/sup 2/) and transport current (density /spl les/10/sup 5/ A/cm/sup 2/) we were able to observe a peculiar bipolar signal form with nearly equal amplitudes for each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively, of the same form as the response in the resistive and normal states: the nonequilibrium picosecond scale component is followed by the bolometric nanosecond component. The nonequilibrium response is interpreted as suppression of the order parameter by excess quasiparticles followed by a change both in resistance (for the resistive state) and in kinetic inductance (for the superconducting state).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: