|   | 
Details
   web
Records
Author Esteban, Eduin; Serna, Hernandez
Title Quantum key distribution protocol with private-public key Type Journal Article
Year 2009 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 3
Keywords quantum cryptography; QKD; protocol
Abstract A quantum cryptographic protocol based in public key cryptography combinations and private key cryptography is presented. Unlike the BB84 protocol 1 and its many variants 2,3 two quantum channels are used. The present research does not make reconciliation mechanisms of information to derive the key. A three related system of key distribution are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) arXiv: 0908.2146 Approved no
Call Number RPLAB @ gujma @ Serial 756
Permanent link to this record
 

 
Author Jian Wei; David Olaya; Boris Karasik; Sergey Pereverzev; Andrei Sergeev; Michael Gershenson
Title Ultra-sensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
Year 2007 Publication ArXiv e-prints Abbreviated Journal
Volume 710 Issue Pages
Keywords cond-mat.other; astro-ph; cond-mat.mes-hall
Abstract The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) arXiv:0710.5474v1; 19 pages, 3 color figures Approved no
Call Number RPLAB @ s @ Serial 407
Permanent link to this record
 

 
Author Ovchinnikov, Yu. N.; Varlamov, A. A.
Title Fluctuation-dissipative phenomena in a narrow superconducting channel carrying current below critical Type Journal Article
Year 2009 Publication arXiv Abbreviated Journal
Volume 0910.2659v1 Issue Pages 1-4
Keywords superconducting nanowire, resistance calculation
Abstract The theory of current transport in a narrow superconducting channel accounting for thermal fluctuations is developed. These fluctuations result in the appearance of small but finite dissipation in the sample. The value of corresponding voltage is found as the function of temperature (close to transition temperature) and arbitrary bias current. It is demonstrated that the value of the activation energy (exponential factor in the Arrenius law) when current approaches to the critical one is proportional to (1-J/Jc)^(5/4). This result is in concordance with the one for the affine phenomenon of the Josephson current decay due to the thermal phase fluctuations, where the activation energy proportional (1-J/J_c)^(3/2)(the difference in the exponents is related to the additional current dependence of the order parameter). Found dependence of the activation energy on current explains the enormous discrepancy between the theoretically predicted before and the experimentally observed broadening of the resistive transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) arXiv:0910.2659v1; 4 pages, 3 figures Approved no
Call Number Serial 931
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords SSPD
Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Duplicated as 1303 Approved no
Call Number Serial 1312
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneev, A. A.; Chulkova, G. M.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Goltsman, G. N.
Title Non-bolometric bottleneck in electron-phonon relaxation in ultra-thin WSi film Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords WSi films, diffusion constant, SSPD, SNSPD
Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in tau{e-ph} = 140-190 ps at TC = 3.4 K, supporting the results of earlier measurements by independent techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Duplicated as 1305 Approved no
Call Number Serial 1341
Permanent link to this record