toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W. url  doi
openurl 
  Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
  Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 89 Issue 10 Pages 104513 (1 to 7)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1367  
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S. url  doi
openurl 
  Title Coherent flux tunneling through NbN nanowires Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 88 Issue 22 Pages 220506 (1 to 5)  
  Keywords NbN nanowires  
  Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1369  
Permanent link to this record
 

 
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol’tsman, G. url  doi
openurl 
  Title One-dimensional resistive states in quasi-two-dimensional superconductors: Experiment and theory Type Journal Article
  Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 76 Issue 9 Pages 094521 (1 to 5)  
  Keywords uasi-two-dimensional superconductors, NbN  
  Abstract We investigate competition between one- and two-dimensional topological excitations—phase slips and vortices—in the formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature TC0. The widths w=100nm of our ultrathin NbN samples are substantially larger than the Ginzburg-Landau coherence length ξ=4nm, and the fluctuation resistivity above TC0 has a two-dimensional character. However, our data show that the resistivity below TC0 is produced by one-dimensional excitations—thermally activated phase slip strips (PSSs) overlapping the sample cross section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current and/or temperature variations. Measuring the resistivity within 7 orders of magnitude, we find that the quantum phase slips can only be essential below this level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1423  
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 67 Issue 13 Pages 132508 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1519  
Permanent link to this record
 

 
Author Il’in, K.S.; Ptitsina, N.G.; Sergeev, A.V.; Gol’tsman, G.N.; Gershenzon, E.M.; Karasik, B.S.; Pechen, E.V.; Krasnosvobodtsev, S.I. url  doi
openurl 
  Title Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films Type Journal Article
  Year 1998 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 57 Issue 24 Pages 15623-15628  
  Keywords NbC films  
  Abstract A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2–13nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference T2 term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5–10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence ∼Tn, with the exponent n=2.5–3. This behavior is explained well by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1585  
Permanent link to this record
 

 
Author Sergeev, A.; Karasik, B. S.; Ptitsina, N. G.; Chulkova, G. M.; Il'in, K. S.; Gershenzon, E. M. url  doi
openurl 
  Title Electron–phonon interaction in disordered conductors Type Journal Article
  Year 1999 Publication Phys. Rev. B Condens. Matter Abbreviated Journal Phys. Rev. B Condens. Matter  
  Volume 263-264 Issue Pages 190-192  
  Keywords disordered conductors, electron-phonon interaction  
  Abstract The electron–phonon interaction is strongly modified in conductors with a small value of the electron mean free path (impure metals, thin films). As a result, the temperature dependencies of both the inelastic electron scattering rate and resistivity differ significantly from those for pure bulk materials. Recent complex measurements have shown that modified dependencies are well described at K by the electron interaction with transverse phonons. At helium temperatures, available data are conflicting, and cannot be described by an universal model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1765  
Permanent link to this record
 

 
Author Ptitsina, N. G.; Chulkova, G. M.; Il’in, K. S.; Sergeev, A. V.; Pochinkov, F. S.; Gershenzon, E. M.; Gershenson, M. E. url  doi
openurl 
  Title Electron-phonon interaction in disordered metal films: The resistivity and electron dephasing rate Type Journal Article
  Year 1997 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 56 Issue 16 Pages 10089-10096  
  Keywords disordered metal films, electron-phonon interaction, electron dephasing rate, resistivity  
  Abstract The temperature dependence of the resistance of films of Al, Be, and NbC with small values of the electron mean free path l=1.5–10nm has been measured at 4.2–300 K. The resistance of all the films contains a T2 contribution that is proportional to the residual resistance; this contribution has been attributed to the interference between the elastic electron scattering and the electron-phonon scattering. Fitting the data to the theory of the electron-phonon-impurity interference (M. Yu. Reiser and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 92, 224 (1987) [Sov. Phys. JETP 65, 1291 (1987)]), we obtain constants of interaction of the electrons with transverse phonons, and estimate the contribution of this interaction to the electron dephasing rate in thin films of Au, Al, Be, Nb, and NbC. Our estimates are in a good agreement with the experimental data on the inelastic electron-phonon scattering in these films. This indicates that the interaction of electrons with transverse phonons controls the electron-phonon relaxation rate in thin-metal films over a broad temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1766  
Permanent link to this record
 

 
Author Zhang, X.; Lita, A. E.; Smirnov, K.; Liu, H. L.; Zhu, D.; Verma, V. B.; Nam, S. W.; Schilling, A. url  doi
openurl 
  Title Strong suppression of the resistivity near the superconducting transition in narrow microbridges in external magnetic fields Type Journal Article
  Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 101 Issue 6 Pages 060508 (1 to 6)  
  Keywords MoSi, WSi films  
  Abstract We have investigated a series of superconducting bridges based on homogeneous amorphous WSi and MoSi films, with bridge widths w ranging from 2 to 1000μm and film thicknesses d∼4−6 and 100 nm. Upon decreasing the bridge widths below the respective Pearl lengths, we observe in all cases distinct changes in the characteristics of the resistive transitions to superconductivity. For each of the films, the resistivity curves R(B,T) separate at a well-defined and field-dependent temperature T∗(B) with decreasing the temperature, resulting in a dramatic suppression of the resistivity and a sharpening of the transitions with decreasing bridge width w. The associated excess conductivity in all the bridges scales as 1/w, which may suggest either the presence of a highly conducting region that is dominating the electric transport, or a change in the vortex dynamics in narrow enough bridges. We argue that this effect can only be observed in materials with sufficiently weak vortex pinning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1800  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Hübers, H.-W.; Kuzmin, A.; Doerner, S.; Ilin, K.; Siegel, M.; Charaev, I.; Vodolazov, D. url  doi
openurl 
  Title Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux Type Journal Article
  Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 98 Issue 13 Pages 134504 (1 to 14)  
  Keywords SNSPD, NbN namowires  
  Abstract We studied the effects of the external magnetic field and photon flux on timing jitter in photon detection by straight superconducting NbN nanowires. At two wavelengths 800 and 1560 nm, statistical distribution in the appearance times of photon counts exhibits Gaussian shape at small times and an exponential tail at large times. The characteristic exponential time is larger for photons with smaller energy and increases with external magnetic field while variations in the Gaussian part of the distribution are less pronounced. Increasing photon flux drives the nanowire from the discrete quantum detection regime to the uniform bolometric regime that averages out fluctuations of the total number of nonequilibrium electrons created by the photon and drastically reduces jitter. The difference between standard deviations of Gaussian parts of distributions for these two regimes provides the measure for the strength of electron-number fluctuations; it increases with the photon energy. We show that the two-dimensional hot-spot detection model explains qualitatively the effect of magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number Serial 1842  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.  
  Volume 49 Issue 13 Pages 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: