toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G. url  doi
openurl 
  Title Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid Type Journal Article
  Year 2020 Publication J. Luminescence Abbreviated Journal J. Luminescence  
  Volume 220 Issue Pages 117008 (1 to 7)  
  Keywords Ag2S QD, quantum dots  
  Abstract The features of IR luminescence of colloidal AgS QDs passivated with thioglycolic acid (AgS/TGA) under the formation of AgS/ZnS/TGA core/shell QDs are considered. A 4.5-fold increase in the quantum yield of recombination IR luminescence within the band with a peak at 960 nm (1.29 eV), full width at half maximum of 250 nm (0.34 eV), and the Stokes shift with respect to the exciton absorption of 0.6 eV was found. The increase in the IR luminescence intensity of AgS/ZnS/TGA QDs is accompanied by an increase in the average luminescence lifetime from 2.9 ns to 14.3 ns, which is explained as “healing” of surface trap states during the formation of the ZnS shell. For the first time, the enhancement of the luminescence intensity photodegradation (hereinafter referred to as fatigue) was found during the formation of the AgS/ZnS/TGA core/shell QDs. The luminescence fatigue is irreversible. We conclude that the initial stage of photolysis of the AgS core QDs under laser irradiation plays a key role. Low-atomic photolytic clusters of silver formed on the AgS core QDs act as luminescence quenching centers and do not reveal structural transformations into AgS, provided that the clusters are not in contact with TGA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2313 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1267  
Permanent link to this record
 

 
Author Shcherbatenko, M. L.; Elezov, M. S.; Goltsman, G. N.; Sych, D. V. url  doi
openurl 
  Title Sub-shot-noise-limited fiber-optic quantum receiver Type Journal Article
  Year 2020 Publication Phys. Rev. A Abbreviated Journal Phys. Rev. A  
  Volume 101 Issue 3 Pages 032306 (1 to 5)  
  Keywords SSPD mixer, SNSPD  
  Abstract We experimentally demonstrate a quantum receiver based on the Kennedy scheme for discrimination between two phase-modulated weak coherent states. The receiver is assembled entirely from standard fiber-optic elements and operates at a conventional telecom wavelength of 1.55 μm. The local oscillator and the signal are transmitted through different optical fibers, and the displaced signal is measured with a high-efficiency superconducting nanowire single-photon detector. We show the discrimination error rate is two times below that of a shot-noise-limited receiver with the same system detection efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1268  
Permanent link to this record
 

 
Author Matyushkin, Y.; Kaurova, N.; Voronov, B.; Goltsman, G.; Fedorov, G. url  doi
openurl 
  Title On chip carbon nanotube tunneling spectroscopy Type Journal Article
  Year 2020 Publication Fullerenes, Nanotubes and Carbon Nanostructures Abbreviated Journal  
  Volume 28 Issue 1 Pages 50-53  
  Keywords carbon nanotubes, CNT, scanning tunneling microscope, STM  
  Abstract We report an experimental study of the band structure of individual carbon nanotubes (SCNTs) based on investigation of the tunneling density of states, i.e. tunneling spectroscopy. A common approach to this task is to use a scanning tunneling microscope (STM). However, this approach has a number of drawbacks, to overcome which, we propose another method – tunneling spectroscopy of SCNTs on a chip using a tunneling contact. This method is simpler, cheaper and technologically advanced than the STM. Fabrication of a tunnel contact can be easily integrated into any technological route, therefore, a tunnel contact can be used, for example, as an additional tool in characterizing any devices based on individual CNTs. In this paper we demonstrate a simple technological procedure that results in fabrication of good-quality tunneling contacts to carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number doi:10.1080/1536383X.2019.1671365 Serial 1269  
Permanent link to this record
 

 
Author Matyushkin, Yakov; Fedorov, Georgy; Moskotin, Maksim; Danilov, Sergey; Ganichev, Sergey; Goltsman, Gregory url  openurl
  Title Gate-mediated helicity sensitive detectors of terahertz radiation with graphene-based field effect transistors Type Abstract
  Year 2020 Publication Graphene and 2dm Virt. Conf. Abbreviated Journal Graphene and 2DM Virt. Conf.  
  Volume Issue Pages  
  Keywords single layer graphene, SLG, CVD, plasmons, FET  
  Abstract Closing of the so-called terahertz gap results in an increased demand for optoelectronic devices operating in the frequency range from 0.1 to 10 THz. Active plasmonic in field effect devices based on high-mobility two-dimensional electron gas (2DEG) opens up opportunities for creation of on-chip spectrum [1] and polarization [2] analysers. Here we show that single layer graphene (SLG) grown using CVD method can be used for an all-electric helicity sensitive polarization broad analyser of THz radiation. Allourresults show plasmonic nature of response. Devices are made in a configuration ofa field-effect transistor (FET) with a graphene channel that has a length of 2 mkm and a width of 5.5 mkm. Response of opposite polarity to clockwise and anticlockwise polarized radiation is due to special antenna design (see Fig.1c) as follow works [2,3]. Our approaches can be extrapolated to other 2D materials and used as a tool to characterize plasmonic excitations in them. [1]Bandurin, D. A., etal.,Nature Communications, 9(1),(2018),1-8.[2]Drexler, C.,etal.,Journal of Applied Physics, 111(12),(2012),124504.[3]Gorbenko, I. V.,et al.,physica status solidi (RRL)–Rapid Research Letters, 13(3),(2019),1800464.  
  Address Grenoble, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Graphene and 2dm Virtual Conference & Expo  
  Notes (down) Approved no  
  Call Number Serial 1743  
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A. url  doi
openurl 
  Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012195 (1 to 4)  
  Keywords SSPD modelling, SNSPD  
  Abstract The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1785  
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A. url  doi
openurl 
  Title Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012116 (1 to 5)  
  Keywords NbN SSPD, SNSPD, NbN films  
  Abstract We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1786  
Permanent link to this record
 

 
Author Polyakova, M. I.; Korneev, A. A.; Semenov, A. V. url  doi
openurl 
  Title Comparison single- and double- spot detection efficiencies of SSPD based to MoSi and NbN films Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012146 (1 to 3)  
  Keywords NbN SSPD, SNSPD, MoSi  
  Abstract In this work, we present results of quantum detector tomography of superconducting single photon detector (SSPD) based on MoSi film, and compare them with previously reported data on NbN. We find that for both materials hot spot interaction length coincides with the strip width, and the dependence of single and double-spot detection efficiencies on bias current are compatible with sufficiently large hot-spot size, approaching the strip width.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1787  
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Manova, N. N.; Korneeva, Y. P.; Korneev, A. A. url  doi
openurl 
  Title Timing jitter in NbN superconducting microstrip single-photon detector Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 14 Issue 4 Pages 044041 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract We experimentally study timing jitter of single-photon detection by NbN superconducting strips with width w ranging from 190 nm to 3μm. We find that timing jitter of both narrow (190 nm) and micron-wide strips is about 40 ps at currents where internal detection efficiency η saturates and it is close to our instrumental jitter. We also calculate intrinsic timing jitter in wide strips using the modified time-dependent Ginzburg-Landau equation coupled with a two-temperature model. We find that with increasing width the intrinsic timing jitter increases and the effect is most considerable at currents where a rapid growth of η changes to saturation. We relate it with complicated vortex and antivortex dynamics, which depends on a photon’s absorption site across the strip and its width. The model also predicts that at current close to depairing current the intrinsic timing jitter of a wide strip could be about ℏ/kBTc (Tc is a critical temperature of superconductor), i.e., the same as for a narrow strip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1788  
Permanent link to this record
 

 
Author Shein, K. V.; Zarudneva, A. A.; Emel’yanova, V. O.; Logunova, M. A.; Chichkov, V. I.; Sobolev, A.S.; Zav’yalov, V. V.; Lehtinen, J. S.; Smirnov, E. O.; Korneeva, Y. P.; Korneev, A. A.; Arutyunov, K. Y. url  doi
openurl 
  Title Superconducting microstructures with high impedance Type Journal Article
  Year 2020 Publication Phys. Solid State Abbreviated Journal Phys. Solid State  
  Volume 62 Issue 9 Pages 1539-1542  
  Keywords superconducting channels, SIS, inetic inductance, tunneling contacts, high impedance  
  Abstract The transport properties of two types of quasi-one-dimensional superconducting microstructures were investigated at ultra-low temperatures: the narrow channels close-packed in the shape of meander, and the chains of tunneling contacts “superconductor-insulator-superconductor.” Both types of the microstructures demonstrated high value of high-frequency impedance and-or the dynamic resistance. The study opens up potential for using of such structures as current stabilizing elements with zero dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7834 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1789  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y. url  doi
openurl 
  Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 13 Issue 2 Pages 024011 (1 to 7)  
  Keywords MoSi SSPD, SNSPD  
  Abstract The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes (down) Approved no  
  Call Number Serial 1790  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: