|   | 
Details
   web
Records
Author Beck, Matthias; Leiderer, Paul; Kabanov, Viktor V.; Gol'tsman, Gregory; Helm, Manfred; Demsar, Jure
Title Energy-gap dynamics of a superconductor NbN studied by time-resolved terahertz spectroscopy Type Abstract
Year 2012 Publication INIS Abbreviated Journal INIS
Volume 45 Issue 12 Pages 1-3
Keywords NbN energy gap
Abstract Using time-resolved terahertz (THz) spectroscopy we performed direct studies of the photoinduced suppression and recovery of the SC gap in a conventional SC NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the important microscopic constants: the Cooper pair-breaking rate via phonon absorption and the bare quasiparticle recombination rate. From the latter we were able to extract the dimensionless electron-phonon coupling constant, λ=1.1±0.1, in excellent agreement with theoretical estimates. The technique also allowed us to determine the absorbed energy required to suppress SC, which in NbN equals the thermodynamic condensation energy (in cuprates the two differ by an order of magnitude). Finally, we present the first studies of dynamics following resonant excitation with intense narrow band THz pulses tuned to above and below the superconducting gap. These suggest an additional process, particularly pronounced near Tc, that could be attributed to amplification of SC via effective quasiparticle cooling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1383
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G.
Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz
Volume Issue Pages 1-2
Keywords NbN HEB mixer, superlattice
Abstract We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number 6105209 Serial 1384
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G.
Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 8072 Issue Pages 80720G (1 to 9)
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III
Notes (down) Approved no
Call Number Serial 1387
Permanent link to this record
 

 
Author Lobanov, Yury V.; Tong, Cheuk-yu E.; Hedden, Abigail S.; Blundell, Raymond; Gol’tsman, Gregory N.
Title Microwave-assisted measurement of the frequency response of terahertz HEB mixers with a Fourier transform spectrometer Type Conference Article
Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 21th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 420-423
Keywords
Abstract We describe a novel method of operation of the HEB direct detector for use with a Fourier Transform Spectrometer. Instead of elevating the bath temperature, we have measured the RF response of waveguide HEB mixers by applying microwave radiation to select appropriate bias conditions. In our experiment, a microwave signal is injected into the HEB mixer via its IF port. By choosing an appropriate injection level, the device can be operated close to the desired operating point. Furthermore, we have shown that both thermal biasing and microwave injection can reproduce the same spectral response of the HEB mixer. However, with the use of microwave injection, there is no need to wait for the mixer to reach thermal equilibrium, so characterisation can be done in less time. Also, the liquid helium consumption for our wet cryostat is also reduced. We have demonstrated that the signal- to-noise ratio of the FTS measurements can be improved with microwave injection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1394
Permanent link to this record
 

 
Author Minaeva, O.; Divochiy, A.; Korneev, A.; Sergienko, A. V.; Goltsman, G. N.
Title High speed infrared photon counting with photon number resolving superconducting single-photon detectors (SSPDs) Type Conference Article
Year 2009 Publication CLEO/Europe – EQEC Abbreviated Journal CLEO/Europe – EQEC
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract A review of development and characterization of the nanostructures consisting of several meander sections, all connected in parallel was presented. Such geometry leads to a significant decrease of the kinetic inductance, without a decrease of the SSPD active area. A new type of SSPDs possess the QE of large-active- area devices, but, simultaneously, allows achieving short response times and the GHz-counting rate. This new generation of superconducting detectors has another significant advantage for quantum key distribution, they have a photon number resolving capability and can distinguish more photons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1399
Permanent link to this record
 

 
Author Baryshev, A. M.; Wild, W.; Likhachev, S. F.; Vdovin, V. F.; Goltsman, G. N.; Kardashev, N. S.
Title Main parameters and instrumentation of Millimetron space mission Type Abstract
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 108
Keywords SVLBI, Millimetron space observatory
Abstract Millimetron (official RosKosmos name ”Spectrum-M”) is a part of ambitious program called Spectrum intended to cover the whole electromagnetic spectrum with world class facilities. It is an approved mission included in Russian space program with the launch date in 2017..2019 time frame. The Millimetron satellite has a deployable 12 m diameter antenna with inner solid 4..6 m dish and a rim of petals. The mirror design is largely based on Radioastron mission concept that will be launched in 2009. If the antenna is passively cooled by radiation to open space, it would operate at approx. 50 K surface temperature, due to presence of a deployable three layer radiation screen. As a goal, there is a consideration of active cooling of antenna to 4 K, but this will depend on resources available to the project. Lagrangian libration point L2 considered for Millimetron orbit. There are four groups of scientific instruments envisioned: SVLBI instruments Space-Earth VLBI. It will allow to achieve unprecedented spatial resolution. Millimetron mission will attempt to achieve a mm/submm wave SVLBI. For that purpose, a SVLBI instrument covering selected ALMA bands and a standard VLBI band is envisioned, accompanied by a maser reference oscillator, a data digitizing and memory system, and a high speed data transmission link to ground. The ALMA bands can be extended to cover water lines if detector technology allows. Type of detector – heterodyne. Photometer/polarimeter. Recent progress in direct detector cameras with low spectral resolution, allows to propose a large format (5-10 kPixel) photometer camera on board of Millimetron mission. This camera can cover 0.1 – 2 THz region (with adequate amount of pixels per each subband). Wide band moderate resolution imaging spectrometer. Wide band moderate R = 1000 imaging spectrometer type instrument similar to SPICA SAFARI is planned, taking advantage of large cooled dish. It will cover the adequate spectral range allowable by antenna and will also work below 1 THz, as no ground instrument can have a cold main dish. High resolution spectrometer. For high resolution spectroscopy a heterodyne instrument is proposed, conceptually similar to HIFI on Herschel. This instrument will cover interesting frequency spots in 0.5..4 THz frequency range (using central part of antenna for higher frequency). It is sure that advances in LO and mixer technology will allow this frequency coverage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1401
Permanent link to this record
 

 
Author Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1403
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Y. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N.
Title Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713827 (1 to 6)
Keywords SSPD, SNSPD, superconducting single photon detector, ultra-thin superconducting films, optical fiber coupling, ready to use receiver
Abstract At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow ( 100 nm) and long ( 0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC= 5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm); dark counts rate ≤1 s-1; duration of voltage pulse ≤5 ns; jitter ≤40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1405
Permanent link to this record
 

 
Author Sáysz, Wojciech; Guziewicz, Marek; Bar, Jan; Wegrzecki, Maciej; Grabiec, Piotr; Grodecki, Remigiusz; Wegrzecka, Iwona; Zwiller, Val; Milosnaya, Irina; Voronov, Boris; Gol’tsman, Gregory; Kitaygorsky, Jen; Sobolewski, Roman
Title Superconducting NbN nanostructures for single photon quantum detectors Type Abstract
Year 2008 Publication Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons Abbreviated Journal Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons
Volume Issue Pages 160
Keywords SSPD, SNSPD
Abstract Practical quantum systems such as quantum communication (QC) or quantum measurement systems require detectors with high speed, high sensitivity, high quantum efficiency (QE), and short deadtimes along with precise timing characteristics and low dark counts. Superconducting single photon detectors (SSPDs) based on ultrathin meander type NbN nanostripes (operated at T=2-5K) are a new and highly promising type of devices fulfilling above requirements. In this paper we present results of the SSPDs nanostructure technological optimization. The base for our detector is thin-film (4nm) NbN layer deposited on 350- P m-thick sapphire substrate The active element of the detector is a meander- nanostructure made of 4-nm-thick and 100-nm-wide NbN stripe, covering 10 u 10 P m 2 area with the filling factor ~0,5. The NbN superconducting films were deposited on sapphire substrates by DC reactive magnetron sputtering whereas the meander element of the detector was patterned by the direct electron-beam lithography followed by reactive-ion etching. To enhance the SSPD efficiency at Ȝ = 1.55 P m, we have performed an approach to increase the absorption of the detector by integrating it with optical resonant cavity. An optical microcavity optimized for absorption of 1.55 P m photons was designed as an one-mirror resonator consisting of a Ȝ/4 dielectric layer and a metallic mirror. The microcavity was deposited on the top of the NbN SSPD meander. The resonator was formed by the dielectric SiO 2 layer and metal mirror made of gold or palladium. Microcavity layers were deposited using a magnetron sputtering system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1409
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N.
Title Terahertz heterodyne array based on NbN HEB mixers Type Abstract
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 43
Keywords NbN HEB mixers array
Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1411
Permanent link to this record