|   | 
Details
   web
Records
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N.
Title Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures Type Abstract
Year 2009 Publication Proc. Progress In Electromagnetics Research Symp. Abbreviated Journal Proc. Progress In Electromagnetics Research Symp.
Volume Issue Pages 863-864
Keywords SSPD, SNSPD
Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Moscow, Russia Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number RPLAB @ sasha @ smirnovsession Serial 1050
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A.
Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering
Volume 60 Issue 8 Pages 1-8
Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer
Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number 10.1117/1.Oe.60.8.082019 Serial 1260
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N.
Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 128 Issue 22 Pages 224303 (1 to 11)
Keywords HEB, resonant tunneling diode, RTD
Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1262
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Goltsman, G. N.
Title Terahertz emission from a weakly-coupled GaAs/AlGaAs superlattice biased into three different modes of current self-oscillations Type Journal Article
Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances
Volume 9 Issue 10 Pages 105220
Keywords GaAs/AlGaAs superlattice, SL, NbN HEB
Abstract Radio-frequency modulated terahertz (THz) emission power from weakly-coupled GaAs/AlGaAs superlattice (SL) has been increased by parallel connection of several SL mesas. Each SL mesa is a self-oscillator with its own oscillation frequency and mode. In coupled non-identical SL mesas biased at different voltages within the hysteresis loop the chaotic, quasiperiodic and frequency-locked modes of self-oscillations of current arise. THz emission was detected when three connected in parallel SL mesas were biased into the frequency-locked and quasiperiodic modes of self-oscillations of current, while in the chaotic mode of those it falls to the noise level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2158-3226 ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1274
Permanent link to this record
 

 
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N.
Title A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 100 Issue 13 Pages 131104 (1 to 4)
Keywords semiconductor superlattice
Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes (down) Approved no
Call Number Serial 1379
Permanent link to this record