|   | 
Details
   web
Records
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Optical single-photon detection in micrometer-scale NbN bridges Type Journal Article
Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 9 Issue 6 Pages 064037 (1 to 13)
Keywords NbN SSPD, SNSPD
Abstract We demonstrate experimentally that single-photon detection can be achieved in micrometer-wide NbN bridges, with widths ranging from 0.53 to 5.15  μm and for photon wavelengths of 408 to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50% of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors, based on nanometer-scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modeling based on the theory of nonequilibrium superconductivity, including the vortex-assisted mechanism of initial dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 1303
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Semenov, A.; Goltsman, G.
Title Photon switching statistics in multistrip superconducting single-photon detectors Type Journal Article
Year 2018 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 28 Issue 7 Pages 1-4
Keywords SSPD, SNSPD
Abstract We study photon count statistics in superconducting single-photon detectors consisting of up to 70 narrow superconducting strips connected in parallel. Using interarrival time analysis, we demonstrate that our samples are operated in the “arm-trigger” regime and require up to seven subsequently absorbed photons to form a resistive state in the whole sample. We also performed numerical simulation of the light and dark count rates versus detector bias current, which are in good agreement with the experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 1304
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.
Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 97 Issue 18 Pages 184512 (1 to 13)
Keywords WSi films, diffusion constant, SSPD, SNSPD
Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 1305
Permanent link to this record
 

 
Author Korneev, A.; Semenov, A.; Vodolazov, D.; Gol’tsman, G. N.; Sobolewski, R.
Title Physics and operation of superconducting single-photon devices Type Book Chapter
Year 2017 Publication Superconductors at the Nanoscale Abbreviated Journal
Volume Issue Pages 279-308
Keywords
Abstract
Address
Corporate Author Thesis
Publisher De Gruyter Place of Publication Editor Wördenweber, R.; Moshchalkov, V.; Bending, S.; Tafuri, F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 1326
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N.
Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 92 Issue 10 Pages 104503 (1 to 9)
Keywords SSPD, SNSPD
Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number Serial 1343
Permanent link to this record