|   | 
Details
   web
Records
Author Goltsman, Gregory
Title Superconducting thin film nanostructures as terahertz and infrared heterodyne and direct detectors Type Conference Article
Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC
Volume Issue Pages Th-I-QTE-03 (1 to 3)
Keywords waveguide SSPD, SNSPD
Abstract We present our recent achievements in the development of superconducting nanowire single-photon detectors (SNSPDs) integrated with optical waveguides on a chip. We demonstrate both single-photon counting with up to 90% on-chipquantum-efficiency (OCDE), and the heterodyne mixing with a close to the quantum limit sensitivity at the telecommunication wavelength using single device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IEEE/CSC & ESAS Superconductivity News Forum
Notes Approved no
Call Number Serial 1745
Permanent link to this record
 

 
Author Gol’tsman, G.N.
Title Overview of recent results for superconducting NbN terahertz and optical detectors and mixers Type Miscellaneous
Year 2014 Publication SM2 – Seminar on Terahertz Photonics Abbreviated Journal
Volume Issue Pages 0562
Keywords NbN SSPD, SNSPD, HEB
Abstract We present our recent achievements in the development of sensitive and ultrafast thin-film superconducting sensors: hot-electron bolometers (HEB), HEB-mixers for terahertz range and infrared single-photon counters. These sensors have already demonstrated a performance that makes them devices-of-choice for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1746
Permanent link to this record
 

 
Author Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman
Title Time-resolved characterization of NbN superconducting single-photon optical detectors Type Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10313 Issue Pages 103130F (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Armitage, J. C.
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada
Notes Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! Approved no
Call Number Serial 1750
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G.
Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate
Volume Issue Pages
Keywords NbN SSPD, SNSPD
Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no
Call Number Serial 1751
Permanent link to this record
 

 
Author Shcherbatenko, M.; Elezov, M.; Manova, N.; Sedykh, K.; Korneev, A.; Korneeva, Y.; Dryazgov, M.; Simonov, N.; Feimov, A.; Goltsman, G.; Sych, D.
Title Single-pixel camera with a large-area microstrip superconducting single photon detector on a multimode fiber Type Journal Article
Year 2021 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 118 Issue 18 Pages 181103
Keywords NbN SSPD, SNSPD
Abstract High sensitivity imaging at the level of single photons is an invaluable tool in many areas, ranging from microscopy to astronomy. However, development of single-photon sensitive detectors with high spatial resolution is very non-trivial. Here we employ the single-pixel imaging approach and demonstrate a proof-of-principle single-pixel single-photon imaging setup. We overcome the problem of low light gathering efficiency by developing a large-area microstrip superconducting single photon detector coupled to a multi-mode optical fiber interface. We show that the setup operates well in the visible and near infrared spectrum, and is able to capture images at the single-photon level.

We thank Philipp Zolotov and Pavel Morozov for NbN film fabrication, ARC coating, and fiber coupling of the detector. We also thank Swabian Instruments GmbH and Dr. Helmut Fedder personally for the kindly provided experimental equipment (Time Tagger Ultra 8). The work in the part of SNSPD research and development was supported by the Russian Foundation for Basic Research Project No. 18-29-20100. The work in the part of the optical setup and imaging was supported by Russian Foundation for Basic Research Project No. 20-32-51004.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1770
Permanent link to this record
 

 
Author Korneev, A. A.
Title Superconducting NbN microstrip single-photon detectors Type Abstract
Year 2021 Publication Proc. Quantum Optics and Photon Counting Abbreviated Journal Proc. Quantum Optics and Photon Counting
Volume 11771 Issue Pages
Keywords NbN SSPD, SNSPD
Abstract Superconducting Single-Photon Detectors (SSPD) invented two decades ago have evolved to a mature technology and have become devices of choice in the advanced applications of quantum optics, such as quantum cryptography and optical quantum computing. In these applications SSPDs are coupled to single-mode fibers and feature almost unity detection efficiency, negligible dark counts, picosecond timing jitter and MHz photon count rate. Meanwhile, there are great many applications requiring coupling to multi-mode fibers or free space. ‘Classical’ SSPDs with 100-nm-wide superconducting strip and covering area of about 100 µm2 are not suitable for further scaling due to degradation of performance and low fabrication yield. Recently we have demonstrated single-photon counting in micron-wide superconducting bridges and strips. Here we present our approach to the realization of practical photon-counting detectors of large enough area to be efficiently coupled to multi-mode fibers or free space. The detector is either a meander or a spiral of 1-µm-wide strip covering an area of 50x50 µm2. Being operated at 1.7K temperature it demonstrates the saturated detection efficiency (i.e. limited by the absorption in the detector) up to 1550 nm wavelength, about 10 ns dead time and timing jitter in range 50-100 ps.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Optics and Photon Counting; SPIE Optics + Optoelectronics, 2021, Online Only
Notes Approved no
Call Number Serial 1784
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A.
Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012195 (1 to 4)
Keywords SSPD modelling, SNSPD
Abstract The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1785
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A.
Title Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012116 (1 to 5)
Keywords NbN SSPD, SNSPD, NbN films
Abstract We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1786
Permanent link to this record
 

 
Author Polyakova, M. I.; Korneev, A. A.; Semenov, A. V.
Title Comparison single- and double- spot detection efficiencies of SSPD based to MoSi and NbN films Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012146 (1 to 3)
Keywords NbN SSPD, SNSPD, MoSi
Abstract In this work, we present results of quantum detector tomography of superconducting single photon detector (SSPD) based on MoSi film, and compare them with previously reported data on NbN. We find that for both materials hot spot interaction length coincides with the strip width, and the dependence of single and double-spot detection efficiencies on bias current are compatible with sufficiently large hot-spot size, approaching the strip width.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1787
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Manova, N. N.; Korneeva, Y. P.; Korneev, A. A.
Title Timing jitter in NbN superconducting microstrip single-photon detector Type Journal Article
Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 14 Issue 4 Pages 044041 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract We experimentally study timing jitter of single-photon detection by NbN superconducting strips with width w ranging from 190 nm to 3μm. We find that timing jitter of both narrow (190 nm) and micron-wide strips is about 40 ps at currents where internal detection efficiency η saturates and it is close to our instrumental jitter. We also calculate intrinsic timing jitter in wide strips using the modified time-dependent Ginzburg-Landau equation coupled with a two-temperature model. We find that with increasing width the intrinsic timing jitter increases and the effect is most considerable at currents where a rapid growth of η changes to saturation. We relate it with complicated vortex and antivortex dynamics, which depends on a photon’s absorption site across the strip and its width. The model also predicts that at current close to depairing current the intrinsic timing jitter of a wide strip could be about ℏ/kBTc (Tc is a critical temperature of superconductor), i.e., the same as for a narrow strip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1788
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y.
Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 13 Issue 2 Pages 024011 (1 to 7)
Keywords MoSi SSPD, SNSPD
Abstract The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1790
Permanent link to this record
 

 
Author Smirnov, K.; Moshkova, M.; Antipov, A.; Morozov, P.; Vakhtomin, Y.
Title The cascade switching of the photon number resolving superconducting single-photon detectors Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 31 Issue 2 Pages 1-4
Keywords PNR SSPD, SNSPD
Abstract In this article, present the first detailed study of cascade switching in superconducting photon number resolving detectors. The detectors were made in the form of four parallel nanowires, coupled with the single-mode optical fiber and mounted into a closed-cycle refrigerator with a temperature of 2.1 K. We found out the value of additional false pulses (N cas.sw. ) appearing due to cascade switching and showed that it is possible to set up the detector bias current that corresponds to a high level of the detection efficiency and a low level of N cas.sw. simultaneously. We reached the detection efficiency of 60% and N cas.sw. = 0.3%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1796
Permanent link to this record
 

 
Author Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Zolotov, P. I.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.
Title Influence of deposited material energy on superconducting properties of the WSi films Type Conference Article
Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.
Volume 781 Issue Pages 012013 (1 to 6)
Keywords WSi SSPD, SNSPD
Abstract WSi thin films have the advantages for creating SNSPDs with a large active area or array of detectors on a single substrate due to the amorphous structure. The superconducting properties of ultrathin WSi films substantially depends on their structure and thickness as the NbN films. Scientific groups investigating WSi films mainly focused only on changes of their thickness and the ratio of the components on the substrate at room temperature. This paper presents experiments to determine the effect of the bias potential on the substrate, the temperature of the substrate, and the peak power of pulsed magnetron sputtering, which is the equivalent of ionization, a tungsten target, on the surface resistance and superconducting properties of the WSi ultrathin films. The negative effect of the substrate temperature and the positive effect of the bias potential and the ionization coefficient (peak current) allow one to choose the best WSi films formation mode for SNSPD: substrate temperature 297 K, bias potential -60 V, and peak current 3.5 A.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1757-899X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1798
Permanent link to this record
 

 
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K.
Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.
Volume 781 Issue Pages 012011 (1 to 5)
Keywords WSi, NbN SSPD, SNSPD
Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1757-899X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1799
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y.
Title On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type Conference Article
Year 2016 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 9907 Issue Pages 99070P (1 to 13)
Keywords SPAD, NbN SSPD applications, SNSPD
Abstract We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.
Language Summary Language Original Title (up)
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Optical and Infrared Interferometry and Imaging V
Notes Approved no
Call Number Serial 1809
Permanent link to this record