toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E. M.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Limiting characteristic of fast superconducting bolometers Type Journal Article
  Year 1989 Publication Sov. Phys.-Tech. Phys. Abbreviated Journal Sov. Phys.-Tech. Phys.  
  Volume 34 Issue Pages 195-199  
  Keywords HEB  
  Abstract Теоретически и экспериментально исследовано физическое ограничение быстродействия сверхпроводящего болометра. Показано, что минимальная постоянная времени реализуется в условиях электронного разогрева и определяется процессом неупругого электрон-фонон- ного взаимодействия. Сформулированы требования кконструкции «электронного болометра» для достижения предельной чувствительности. Проведено сравнение характеристик электронного болометра и обычных болометров различных типов.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes О предельных характеристиках быстродействующих серхпроводниковых болометров Approved no  
  Call Number Serial 237  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  doi
openurl 
  Title Wide-band highspeed Nb and YBaCuO detectors Type Journal Article
  Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.  
  Volume 27 Issue 2 Pages 2836-2839  
  Keywords YBCO, HTS, Nb detectors  
  Abstract The physical limitations on the response time and the nature of nonequilibrium detection of radiation were investigated for Nb and YBCO film in a wide spectral range from millimeter to near-infrared wavelengths. In the case of ideal heat removal from the film, the detection mechanism is connected with an electron heating effect which is not selective over a wide spectral interval. For Nb, the dependence of the response time on the electron mean free path l and temperature T is tau varies as T/sup -2/l/sup -1/. The values of detectivity D* and tau are 3*10/sup 11/ W/sup -1/ Hz/sup 1/2/ cm and 5*10/sup -9/ s at T=1.6 K, respectively. For YBCO film the tau value of 1-2 ps at T=77 K was obtained; the NEP value of 3*10/sup -11/ W-Hz/sup -1/2/ can be obtained at T=77 K in the case of the optimal film matching to the radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9464 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 239  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Lulkin, A.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Electron-phonon interaction in ultrathin Nb films Type Journal Article
  Year 1990 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 70 Issue 3 Pages 505-511  
  Keywords Nb films  
  Abstract A study was made of the heating of electrons in normal resistive states of superconducting thin Nb films. The directly determined relaxation time of the resistance of a sample and the rise of the electron temperature were used to find the electron-phonon interaction time rep,, The dependence of rep, on the mean free path of electrons re,, a 1-'demonstrated, in agreement with the theoretical predictions, that the contribution of the inelastic scattering of electrons by impurities to the energy relaxation process decreased at low temperatures and the observed temperature dependence rep, a T 2 was due to a modification of the phonon spectrum in thin fllms.

1. Much new information on the electron-phonon interaction time?;,, in thin films of normal metals and superconductors has been published recently. This information has been obtained mainly as a result of two types of measurement. One includes experiments on weak electron localization investigated by the method of quantum interference corrections to the conductivity of disordered conductors, which can be used to find the relaxation time T, of the phase of the electron wave function. In the absence of the scattering of electrons by paramagnetic impurities the relaxation time T, is associated with the most effective process of energy relaxation: T;= TL+ rep;, where T,, is the electronelectron relaxation time. At low temperatures, when the dependence T; a T is exhibited by thin disordered films, the dominant channel is that of the electron-electron relaxation and there is a lower limit to the temperature range in which rep, can be investigated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 241  
Permanent link to this record
 

 
Author Kawamura, J.; Hunter, T. R.; Tong, C. Y. E.; Blundell, R.; Papa, D. C.; Patt, F.; Peters, W.; Wilson, T.; Henkel, C.; Goltsman, G.; Gershenzon, E. url  doi
openurl 
  Title Ground-based terahertz CO spectroscopy towards Orion Type Journal Article
  Year 2002 Publication A&A Abbreviated Journal A&A  
  Volume 394 Issue 1 Pages 271-274  
  Keywords HEB mixers, applications  
  Abstract Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO () spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, , high density molecular gas, , is quite extended, found along a ~ region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with and ≈ . The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 322  
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title On-chip controlled placement of nanodiamonds with a nitrogen-vacancy color centers (NV) Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051046 (1 to 4)  
  Keywords nanodiamonds, NV-centers  
  Abstract Here we studied the fabrication technique of a kilopixel array of nanodiamonds with a nitrogen-vacancy color centers (NV) on top of the chip and measured the second-order correlation function deep, clearly demonstrated the presence of single-photon sources. The controlled position of nanodiamonds, determined from the measurement of second-order correlation fiction, was realize, as well as the yield of optimized technique equals 12.5% is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1298  
Permanent link to this record
 

 
Author Semenov, A.; Goltsman, G.; Korneev, A. url  doi
openurl 
  Title Quantum detection by current carrying superconducting film Type Journal Article
  Year 2001 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 351 Issue 4 Pages 349-356  
  Keywords quantum detection, phase slip centers, quasiparticle diffusion  
  Abstract We describe a novel quantum detection mechanism in the superconducting film carrying supercurrent. The mechanism incorporates growing normal domain and breaking of superconductivity by the bias current. A single photon absorbed in the film creates transient normal spot that causes redistribution of the current and, consequently, increase of the current density in superconducting areas. When the current density exceeds the critical value, the film switches into resistive state and generates the voltage pulse. Analysis shows that a submicron-wide film of conventional low temperature superconductor operated in liquid helium may detect single far-infrared photon. The amplitude and duration of the voltage pulse are in the millivolt and picosecond range, respectively. The quantitative model is presented that allows simulation of the detector utilizing this detection mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 507  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. url  doi
openurl 
  Title Ultrafast superconducting single-photon detector Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 15 Pages 1670-1680  
  Keywords SSPD, SNSPD  
  Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 607  
Permanent link to this record
 

 
Author Tikhonov, V. V.; Boyarskii, D. A.; Polyakova, O. N.; Dzardanov, A. L.; Goltsman, G. N. url  doi
openurl 
  Title Radiophysical and dielectric properties of ore minerals in 12--145 GHz frequency range Type Journal Article
  Year 2010 Publication PIER B Abbreviated Journal PIER B  
  Volume 25 Issue Pages 349-367  
  Keywords complex permittivity, ore minerals  
  Abstract The paper discusses a retrieval technique of complex permittivity of ore minerals in frequency ranges of 12--38 GHz and 77--145 GHz. The method is based on measuring frequency dependencies of transmissivity and reflectivity of plate-parallel mineral samples. In the 12--38 GHz range, the measurements were conducted using a panoramic standing wave ratio and attenuation meter. In the 77--145 GHz range, frequency dependencies of transmissivity and reflectivity were obtained using millimeter-band spectrometer with backward-wave oscillators. The real and imaginary parts of complex permittivity of a mineral were determined solving an equation system for frequency dependencies of transmissivity and reflectivity of an absorbing layer located between two dielectric media. In the course of the work, minerals that are primary ores in iron, zinc, copper and titanium mining were investigated: magnetite, hematite, sphalerite, chalcopyrite, pyrite, and ilmenite.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 639  
Permanent link to this record
 

 
Author Korneeva, Y.; Florya, I.; Semenov, A.; Korneev, A.; Goltsman, G. doi  openurl
  Title New generation of nanowire NbN superconducting single-photon detector for mid-infrared Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages 323-326  
  Keywords SSPD  
  Abstract We present a break-through approach to mid-infrared single-photon detection based on nanowire NbN superconducting single-photon detectors (SSPD). Although SSPD became a mature technology for telecom wavelengths (1.3-1.55 μm) its further expansion to mid-infrared wavelength was hampered by low sensitivity above 2 μm. We managed to overcome this limit by reducing the nanowire width to 50 nm, while retaining high superconducting properties and connecting the wires in parallel to produce a voltage response of sufficient magnitude. The new device exhibits 10 times better quantum efficiency at 3.5 μm wavelength than the “standard” SSPD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 644  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. url  doi
openurl 
  Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2-3 Pages 334-344  
  Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN  
  Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 701  
Permanent link to this record
 

 
Author Korneev, A.; Finkel, M.; Maslennikov, S.; Korneeva, Yu.; Florya, I.; Tarkhov, M.; Elezov, M.; Ryabchun, S.; Tretyakov, I.; Isupova, A.; Voronov, B.; Goltsman, G. openurl 
  Title Superconducting NbN terahertz detectors and infrared photon counters Type Journal Article
  Year 2010 Publication Вестник НГУ. Серия: физ. Abbreviated Journal Вестник НГУ. Серия: физ.  
  Volume 5 Issue 4 Pages 68-72  
  Keywords HEB; HEB mixer  
  Abstract We present our recent achievements in the development of sensitive and ultrafast thin-film superconducting sensors: hot-electron bolometers (HEB), HEB-mixers for terahertz range and infrared single-photon counters. These sensors have already demonstrated a performance that makes them devices-of-choice for many terahertz and optical applications. Keywords: Hot electron bolometer mixers, infrared single-photon detectors, superconducting device fabrication, superconducting NbN films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1818-7994 ISBN Medium  
  Area Expedition Conference  
  Notes УДК 538.9 Approved no  
  Call Number RPLAB @ gujma @ Serial 708  
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Goltsman, G. N.; Verevkin, A. A.; Toropov, A. I.; Mauskopf, P. url  doi
openurl 
  Title Concentration dependence of energy relaxation time in AlGaAs/GaAs heterojunctions: direct measurements Type Journal Article
  Year 2011 Publication Semicond. Sci. Technol. Abbreviated Journal Semicond. Sci. Technol.  
  Volume 26 Issue 2 Pages 025013  
  Keywords AlGaAs/GaAs heterojunctions  
  Abstract We present measurements of the energy relaxation time, τε, of electrons in a single heterojunction in a quasi-equilibrium state using microwave time-resolved spectroscopy at 4.2 K. We find the relaxation time has a power-law dependence on the carrier density of the two-dimensional electron gas, τε∝nγs with γ = 0.40 ± 0.02 for values of the carrier density, ns, from 1.6 × 1011 to 6.6 × 1011cm−2. The results are in good agreement with predictions taking into account the scattering of the carriers by both piezoelectric and deformation potential acoustic phonons. We compare these results with indirect measurements of the energy relaxation time from energy loss measurements involving Joule heating of the electron gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1215  
Permanent link to this record
 

 
Author Rath, P.; Vetter, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Nebel, C.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps Type Conference Article
  Year 2016 Publication Integrated Optics: Devices, Mat. Technol. XX Abbreviated Journal Integrated Optics: Devices, Mat. Technol. XX  
  Volume 9750 Issue Pages 135-142  
  Keywords SSPD, Superconducting Nanowire Single-Photon Detector, SNSPD, Single Photon Detector, Diamond Photonics, Diamond Integrated Optics, Diamond Waveguides, Integrated Optics, Low Timing Jitter  
  Abstract We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavelength regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 μA) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4×10-19 W/Hz1/2 at 765 nm) and timing jitter (down to 23 ps).  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication (up) Editor Broquin, J.-E.; Conti, G.N.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1210  
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. url  openurl
  Title High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Miscellaneous
  Year 2012 Publication arXiv Abbreviated Journal arXiv  
  Volume 1108.5299 Issue Pages 1-23  
  Keywords optical waveguides, waveguide SSPD, guantum photonics, jitter, detection efficiency  
  Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. High photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides which allows us to drastically increase the absorption length for incoming photons. When operating the detectors close to the critical current we achieve high on-chip single photon detection efficiency up to 91% at telecom wavelengths, with uncertainty dictated by the variation of the waveguide photon flux. We also observe remarkably low dark count rates without significant compromise of detection efficiency. Furthermore, our detectors are fully embedded in a scalable silicon photonic circuit and provide ultrashort timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 845  
Permanent link to this record
 

 
Author Ferrari, S.; Kahl, O.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. url  doi
openurl 
  Title Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires Type Journal Article
  Year 2015 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 106 Issue 15 Pages 151101 (1 to 5)  
  Keywords SSPD, SNSPD  
  Abstract We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

W. H. P. Pernice acknowledges support by the DFG Grant Nos. PE 1832/1-1 and PE 1832/1-2 and the Helmholtz society through Grant No. HIRG-0005. The Ph.D. education of O. Kahl is embedded in the Karlsruhe School of Optics and Photonics (KSOP). G. N. Goltsman acknowledges support by Russian Federation President Grant HШ-1918.2014.2 and Ministry of Education and Science of the Russian Federation Contract No.: RFMEFI58614X0007. A. Korneev acknowledges support by Statement Task No. 3.1846.2014/k. V. Kovalyuk acknowledges support by Statement Task No. 2327. We also acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. We thank S. Kühn and S. Diewald for the help with device fabrication as well as B. Voronov and A. Shishkin for help with NbN thin film deposition and A. Semenov for helpful discussion about the detection mechanism of nanowire SSPD's.

The authors declare no competing financial interests.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1211  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: