toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kerr, A. R.; Feldman, M. J.; Pan, S.-K. openurl 
  Title Receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations Type Journal Article
  Year 1996 Publication Electronics division internal report NO. 304 Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 947  
Permanent link to this record
 

 
Author Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm; Ilin, Konstantin; Siegel, Michael; Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory url  openurl
  Title Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors Type Abstract
  Year 2013 Publication INIS Abbreviated Journal INIS  
  Volume 46 Issue 8 Pages 1-3  
  Keywords TaN, NbN SSPD, SNSPD  
  Abstract The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1374  
Permanent link to this record
 

 
Author Shurakov, A.; Tong, Cheuk-yu E.; Grimes, P.; Blundell, R.; Golt'sman, G. openurl 
  Title A microwave reflection readout scheme for hot electron bolometric direct detector Type Journal Article
  Year 2015 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 5 Issue Pages 81-84  
  Keywords HEB detectors  
  Abstract In this paper, we propose and present data from a fast THz detector based on the repurpose of hot electron bolometer mixers (HEB) fabricated from superconducting NbN thinfilm. This detector is essentially a traditional NbN bolometer element that operates under the influence of a microwave pump. The in-jected microwave power serves the dual purpose of enhancing the detector sensitivity and reading out the impedance changes of the device in response to incidentTHz radiation. We have measured an optical Noise Equivalent Power of 4 pW/ Hz for our detector at a bath temperature of 4.2 K. The measurement frequency was 0.83 THz and the modulation frequency was 1.48 kHz. The readout

scheme is versatile and facilitates both high-speed operation as well as multi-pixel applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 950  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
 

 
Author Meledin D.; Desmaris V.; Ferm S.-E.; Fredrixon M.; Henke D.; Lapkin I.; Nyström O.; Pantaleev M.; Pavolotsky A.; Strandberg M.; Sundin E.; Belitsky V. openurl 
  Title APEX Band T2: A 1.25 – 1.39 THz Waveguide Balanced HEB Receiver Type Journal Article
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 181-185  
  Keywords  
  Abstract A waveguide 1.25–1.39 THz Hot Electron Bolometer (HEB) balanced receiver was successfully developed, characterized and installed at the Atacama Pathfinder EXperiment (APEX) telescope. The receiver employs a quadrature balanced scheme using a waveguide 90-degree 3 dB RF hybrid, HEB mixers and a 180-degree IF hybrid. The HEB mixers are based on ultrathin NbN film deposited on crystalline quartz with a MgO buffer layer. Integrated into the multi-channel APEX facility receiver (SHeFI), the results presented here demonstrate exceptional performance; a receiver noise temperature of 1000 K measured at the telescope at the center of the receiver IF band 2-4 GHz, and at an LO frequency of 1294 GHz. Stability of the receiver is fully in line with the SIS mixer bands of the SHeFI, and gives a spectroscopic Allan time of more than 200 s with a noise bandwidth of 1 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 974  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: