|   | 
Details
   web
Records
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
Year 2000 Publication (down) Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 39-48
Keywords NbN HEB mixers
Abstract We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 305
Permanent link to this record
 

 
Author Khosropanah, P.; Merkel, H.; Yngvesson, S.; Adam, A.; Cherednichenko, S.; Kollberg, E.
Title A distributed device model for phonon-cooled HEB mixers predicting IV characteristics, gain, noise and IF bandwidth Type Conference Article
Year 2000 Publication (down) Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 474-488
Keywords HEB mixer numerical model, diffusion cooling channel, diffusion channel, distributed HEB model, distributed model
Abstract A distributed model for phonon-cooled superconductor hot electron bolometer (HEB) mixers is given, which is based on solving the one-dimensional heat balance equation for the electron temperature profile along the superconductor strip. In this model it is assumed that the LO power is absorbed uniformly along the bridge but the DC power absorption depends on the local resistivity and is thus not uniform. The electron temperature dependence of the resistivity is assumed to be continuous and has a Fermi form. These assumptions are used in setting up the non-linear heat balance equation, which is solved numerically for the electron temperature profile along the bolometer strip. Based on this profile the resistance of the device and the IV curves are calculated. The IV curves are in excellent agreement with measurement results. Using a small signal model the conversion gain of the mixer is obtained. The expressions for Johnson noise and thermal fluctuation noise are derived. The calculated results are in close agreement with measurements, provided that one of the parameters used is adjusted.
Address
Corporate Author Thesis
Publisher Place of Publication University of Michigan, Ann Arbor, MI USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 893
Permanent link to this record
 

 
Author Darula, Marian; Semenov, Alex D.; Hübers, Heinz-Wilhelm; Schubert, Josef
Title Quasioptical high-Tc superconductor Josephson mixer at terahertz frequencies Type Abstract
Year 2000 Publication (down) Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 515
Keywords HTS Josephson mixers
Abstract Mixers based on Josephson junctions from conventional superconductor materials have demonstrated excellent performance at subgap frequencies. The advantages of Josephson mixers are low optimal power of the local oscillator and large intermediate frequency bandwidth but their noise temperature increases dramatically at frequencies corresponding to the energy gap of the superconductor, which is typically below 1 THz for widely used materials. The large energy gap of oxide superconductors makes them promising candidates for development of terahertz Josephson mixers. Here we report on experimental study of the quasioptical mixer utilizing bicrystal Josephson junction from high-transition-temperature YBa 2 Cu 3 O 7-δ film. Junctions with a width of 2 µm were fabricated from 100 nm thick laser ablated films on bicrystal MgO substrates and had the and the J C R n product of about 2 mV at 4.2 K. The planar complementary logarithmic spiral antenna incorporated into co-planar waveguide was patterned from 200 nm thick gold film thermally evaporated in situ on top of the YBa 2 Cu 3 O 7-δ film. The mixer chip was clamped to the extended hemispherical silicon lens. Performance of the mixer was investigated at 4.5 K bath temperature. We used FIR laser as a local oscillator at frequencies 0.698 and 2.52 THz. System noise temperature (DSB) was determined from Y-factor measured with 300 K and 77 K loads. At 0.698 THz the lowest noise temperature 1750 K was observed when the mixer was biased with the fixed current to the region in the vicinity of either the first Shapiro step or the critical current. Between these two bias points the noise temperature increased to ≈ 20000 K. As function of the local oscillator power the noise temperature reached the minimum when the critical current was suppressed to the half of its equilibrium value. Power of the local oscillator absorbed by the mixer at optimal operation was of the order 100 nW. The present design of our antenna limits the upper operation frequency to the value of 1.8 THz. Nevertheless, we clearly observed Shapiro steps at the frequency 2.52 THz. Bearing in mind an improved design of the antenna, we estimate the 3000 K DSB noise temperature at this frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1555
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol’tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7-δ hot-electron bolometer mixer at 0.6 THz Type Conference Article
Year 2000 Publication (down) Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 517-522
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on a YBa 2 Cu 3 O 7-δ (YBCO) superconducting thin film. Mixer conversion loss of –46 dB, absorbed local oscillator power and intermediate frequency bandwidth were measured at the local oscillator frequency 0.6 THz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated with a planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1556
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Yagoubov, P.; Merkel, H.; Kollberg, E.; Yngvesson, K. S.; Voronov, B.; Gol’tsman, G.
Title IF bandwidth of phonon cooled HEB mixers made from NbN films on MgO substrates Type Conference Article
Year 2000 Publication (down) Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 219-227
Keywords NbN HEB mixers, cinversion gain bandwidth, IF bandwidth
Abstract An investigation of gain and noise bandwidth of phonon-cooled hot-electron bolometric (HEB) mixers is presented. The radiation coupling to the mixers is quasioptical through either a spiral or twin-slot antenna. A maximum gain bandwidth of 4.8 GHz is obtained for mixers based on a 3.5 nm thin NbN film with Tc= 10 K. The noise bandwidth is 5.6 GHz, at the moment limited by parasitic elements in the, device mount fixture. At 0.65 THz the DSB receiver noise temperature is 700-800 К in the IF band 1-2 GHz, and 1150-2700 К in the band 3.5-7 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1557
Permanent link to this record
 

 
Author Saslaw, William C.
Title The distribution of the galaxies. Gravitational clustering in cosmology Type Book Whole
Year 2000 Publication (down) Press syndicate of the University of Cambridge Abbreviated Journal
Volume Issue Pages
Keywords astronomy
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 495
Permanent link to this record
 

 
Author Sergeev, A.; Mitin, V.
Title Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials Type Journal Article
Year 2000 Publication (down) Phys. Rev. B. Abbreviated Journal Phys. Rev. B.
Volume 61 Issue 9 Pages 6041-6047
Keywords disordered conductors, scattering potential, electron-phonon interaction
Abstract Employing the Keldysh diagram technique, we calculate the electron-phonon energy relaxation rate in a conductor with the vibrating and static δ-correlated random electron-scattering potentials. If the scattering potential is completely dragged by phonons, this model yields the Schmid’s result for the inelastic electron-scattering rate τ−1e−ph. At low temperatures the effective interaction decreases due to disorder, and τ−1e−ph∝T4l (l is the electron mean-free path). In the presense of the static potential, quantum interference of numerous scattering processes drastically changes the effective electron-phonon interaction. In particular, at low temperatures the interaction increases, and τ−1e−ph∝T2/l. Along with an enhancement of the interaction, which is observed in disordered metallic films and semiconducting structures at low temperatures, the suggested model allows us to explain the strong sensitivity of the electron relaxation rate to the microscopic quality of a particular film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 307
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol'tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7−δ hot-electron bolometer mixer Type Journal Article
Year 2000 Publication (down) Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 341-348 Issue Pages 2653-2654
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on YBa2Cu3O7−δ (YBCO) superconducting thin film. Mixer conversion loss, absorbed local oscillator power and intermediate frequency bandwidth was measured at the local oscillator frequency 600 GHz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated into planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1552
Permanent link to this record
 

 
Author Manus, M. K. Mc; Kash, J. A.; Steen, S. E.; Polonsky, S.; Tsang, J.C.; Knebel, D. R.; Huott, W.
Title PICA: Backside failure analysis of CMOS circuits using picosecond imaging circuit analysis Type Journal Article
Year 2000 Publication (down) Microelectronics Reliability Abbreviated Journal Microelectronics Reliability
Volume 40 Issue Pages 1353-1358
Keywords SSPD, CMOS testing
Abstract Normal operation of complementary metal-oxide semiconductor (CMOS) devices entails the emission of picosecond pulses of light, which can be used to diagnose circuit problems. The pulses that are observed from submicron sized field effect transistors (FETs) are synchronous with logic state switching. Picosecond Imaging Circuit Analysis (PICA), a new optical imaging technique combining imaging with timing, spatially resolves individual devices at the 0.5 micron level and switching events on a 10 picosecond timescale. PICA is used here for the diagnostics of failures on two VLSI microprocessors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1054
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
Year 2000 Publication (down) JETP Lett. Abbreviated Journal JETP Lett.
Volume 71 Issue 1 Pages 31-34
Keywords 2DEG, GaAs/AlGaAs heterostructures
Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no
Call Number Serial 1559
Permanent link to this record