|   | 
Details
   web
Records
Author Ovchinnikov, Yu. N.; Varlamov, A. A.
Title Fluctuation-dissipative phenomena in a narrow superconducting channel carrying current below critical Type Journal Article
Year 2009 Publication (up) arXiv Abbreviated Journal
Volume 0910.2659v1 Issue Pages 1-4
Keywords superconducting nanowire, resistance calculation
Abstract The theory of current transport in a narrow superconducting channel accounting for thermal fluctuations is developed. These fluctuations result in the appearance of small but finite dissipation in the sample. The value of corresponding voltage is found as the function of temperature (close to transition temperature) and arbitrary bias current. It is demonstrated that the value of the activation energy (exponential factor in the Arrenius law) when current approaches to the critical one is proportional to (1-J/Jc)^(5/4). This result is in concordance with the one for the affine phenomenon of the Josephson current decay due to the thermal phase fluctuations, where the activation energy proportional (1-J/J_c)^(3/2)(the difference in the exponents is related to the additional current dependence of the order parameter). Found dependence of the activation energy on current explains the enormous discrepancy between the theoretically predicted before and the experimentally observed broadening of the resistive transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes arXiv:0910.2659v1; 4 pages, 3 figures Approved no
Call Number Serial 931
Permanent link to this record
 

 
Author Minaeva, O.; Divochiy, A.; Korneev, A.; Sergienko, A. V.; Goltsman, G. N.
Title High speed infrared photon counting with photon number resolving superconducting single-photon detectors (SSPDs) Type Conference Article
Year 2009 Publication (up) CLEO/Europe – EQEC Abbreviated Journal CLEO/Europe – EQEC
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract A review of development and characterization of the nanostructures consisting of several meander sections, all connected in parallel was presented. Such geometry leads to a significant decrease of the kinetic inductance, without a decrease of the SSPD active area. A new type of SSPDs possess the QE of large-active- area devices, but, simultaneously, allows achieving short response times and the GHz-counting rate. This new generation of superconducting detectors has another significant advantage for quantum key distribution, they have a photon number resolving capability and can distinguish more photons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1399
Permanent link to this record
 

 
Author Parrott, Edward P. J.; Zeitler, J. Axel; Fris<cc><152>c<cc><152>ic<cc><81>, Tomislav; Pepper, Michael; Jones, William; Day, Graeme M.; Gladden, Lynn F.
Title Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals Type Journal Article
Year 2009 Publication (up) Crystal Growth & Design Abbreviated Journal Crystal Growth & Design
Volume 9 Issue 3 Pages 1452-1460
Keywords supramolecular recognition, infrared, terahertz, IR, THz, TDS
Abstract Terahertz time-domain-spectroscopy (THz-TDS) has emerged as a versatile spectroscopic technique, and an alternative to powder X-ray diffraction in the characterization of molecular crystals. We tested the ability of terahertz spectroscopy to distinguish between chiral and racemic hydrogen-bonded cocrystals that are similar in molecular and supramolecular structure. Terahertz spectroscopy readily distinguished between the isostructural cocrystals of theophylline with chiral and racemic forms of malic acid which are almost identical in molecular structure and supramolecular architecture. Similarly, the cocrystals of theophylline with chiral and racemic forms of tartaric acid, which are similar at the molecular level but dissimilar in crystal packing, were distinguished unequivocally. The investigation of the same cocrystals using X-ray powder diffraction and Raman spectroscopy suggested that THz-TDS is comparable in sensitivity to diffraction methods and more sensitive than Raman spectroscopy to changes in cocrystal architecture. The differences in spectra acquired by THz-TDS could be further enhanced by cooling the samples to 109 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 567
Permanent link to this record
 

 
Author Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A.
Title Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors Type Journal Article
Year 2009 Publication (up) Eur. Phys. J. Appl. Phys. Abbreviated Journal
Volume 47 Issue Pages 10701
Keywords SSPD, SNSPD
Abstract We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ alex_kazakov @ Serial 1062
Permanent link to this record
 

 
Author Wild, W.; Kardashev, N. S.; Likhachev, S. F.; Babakin, N. G.; Arkhipov, V. Y.; Vinogradov, I. S.; Andreyanov, V. V.; Fedorchuk, S. D.; Myshonkova, N. V.; Alexsandrov, Y. A.; Novokov, I. D.; Goltsman, G. N.; Cherepaschuk, A. M.; Shustov, B. M.; Vystavkin, A. N.; Koshelets, V. P.; Vdovin, V.F.; de Graauw, T.; Helmich, F.; vd Tak, F.; Shipman, R.; Baryshev, A.; Gao, J. R.; Khosropanah, P.; Roelfsema, P.; Barthel, P.; Spaans, M.; Mendez, M.; Klapwijk, T.; Israel, F.; Hogerheijde, M.; vd Werf, P.; Cernicharo, J.; Martin-Pintado, J.; Planesas, P.; Gallego, J. D.; Beaudin, G.; Krieg, J. M.; Gerin, M.; Pagani, L.; Saraceno, P.; Di Giorgio, A. M.; Cerulli, R.; Orfei, R.; Spinoglio, L.; Piazzo, L.; Liseau, R.; Belitsky, V.; Cherednichenko, S.; Poglitsch, A.; Raab, W.; Guesten, R.; Klein, B.; Stutzki, J.; Honingh, N.; Benz, A.; Murphy, A.; Trappe, N.; Räisänen, A.
Title Millimetron—a large Russian-European submillimeter space observatory Type Journal Article
Year 2009 Publication (up) Exp. Astron. Abbreviated Journal Exp. Astron.
Volume 23 Issue 1 Pages 221-244
Keywords Millimetron space observatory, VLBI, very long baseline interferometry
Abstract Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0922-6435 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1402
Permanent link to this record
 

 
Author Driessen, Eduard Frans Clemens
Title Coupling light to periodic nanostructures Type Journal Article
Year 2009 Publication (up) Faculty of Science, Leiden University Abbreviated Journal Fac. Scien., Leiden Un.
Volume Issue Pages 144
Keywords SSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Issue Date: 2009-09-24 Approved no
Call Number RPLAB @ gujma @ Serial 675
Permanent link to this record
 

 
Author Wang, Zhen; Miki, S.; Fujiwara, M.
Title Superconducting nanowire single-photon detectors for quantum information and communications Type Journal Article
Year 2009 Publication (up) IEEE J. Sel. Topics Quantum Electron. Abbreviated Journal
Volume 15 Issue 6 Pages 1741-1747
Keywords SSPD
Abstract Superconducting nanowire single-photon detectors (SNSPDs or SSPD) are highly promising devices in the growing field of quantum information and communications technology. We have developed a practical SSPD system with our superconducting thin films and devices fabrication, optical coupling packaging, and cryogenic technology. The SSPD system consists of six-channel SSPD devices and a compact Gifford-McMahon (GM) cryocooler, and can operate continuously on 100 V ac power without the need for any cryogens. The SSPD devices were fabricated from high-quality niobium nitride (NbN) ultrathin films that were epitaxially grown on single-crystal MgO substrates. The packaged SSPD devices were temperature stabilized to 2.96 K ± 10 mK. The system detection efficiency for an SSPD device with an area of 20 × 20 ¿m2 was found to be 2.6% and 4.5% at wavelengths of 1550 and 1310 nm, respectively, at a dark count rate of 100 Hz, and a jitter of 100 ps full-width at half maximum. We also performed ultrafast BB84 quantum key distribution (QKD) field testing and entanglement-based QKD experiments using these SSPD devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 676
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory
Title Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
Year 2009 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 1 Pages 14-19
Keywords HEB, mixer, Allan variance, stabilization, radiometer equation
Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 559
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory
Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
Year 2009 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 3 Pages 293-296
Keywords HEB mixer
Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 636
Permanent link to this record
 

 
Author Xiaolong Hu; Holzwarth, C.W.; Masciarelli, D.; Dauler, E.A.; Berggren, K.K.
Title Efficiently coupling light to superconducting nanowire single-photon detectors Type Journal Article
Year 2009 Publication (up) IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 19 Issue 3 Pages 336-340
Keywords optical antennas; SNSPD
Abstract We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, (1) for the free-space coupling, the absorptance of the NbN nanowire for TM-polarized photons at the wavelength of 1550 nm can be as high as 96% by adding silver optical antennae; (2) for the fiber coupling, the absorptance of the NbN nanowire for TE-like-polarized photons can reach 76% including coupling efficiency at the wavelength of 1550 nm by adding a silicon nitride waveguide and an inverse-taper coupler.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 647
Permanent link to this record