toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S. url  doi
openurl 
  Title Thermal relaxation in metal films limited by diffuson lattice excitations of amorphous substrates Type Journal Article
  Year 2021 Publication (down) Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 15 Issue 5 Pages 054014  
  Keywords InOx, Au/Ni, NbN films  
  Abstract We examine the role of a silicon-based amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The samples studied consist of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry is used to measure the electron temperature Te of the films as a function of Joule power per unit area P2D. In all samples, we observe a P2D∝Tne dependence, with exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear temperature dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for a phonon mean free path shorter than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1769  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconductivity in highly disordered NbN nanowires Type Journal Article
  Year 2016 Publication (down) Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 27 Issue 47 Pages 47lt02 (1 to 8)  
  Keywords NbN nanowires  
  Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.  
  Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27782000 Approved no  
  Call Number Serial 1332  
Permanent link to this record
 

 
Author Polyakova, M. I.; Florya, I. N.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Extracting hot-spot correlation length from SNSPD tomography data Type Conference Article
  Year 2019 Publication (down) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012166 (1 to 4)  
  Keywords SSPD, SNSPD, quantum detector tomography, QDT  
  Abstract We present data of quantum detector tomography for the samples specifically optimized for this problem. Using this method, we take results of hot-spot correlation length of 17 ± 2 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1273  
Permanent link to this record
 

 
Author Polyakova, M. I.; Korneev, A. A.; Semenov, A. V. url  doi
openurl 
  Title Comparison single- and double- spot detection efficiencies of SSPD based to MoSi and NbN films Type Conference Article
  Year 2020 Publication (down) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012146 (1 to 3)  
  Keywords NbN SSPD, SNSPD, MoSi  
  Abstract In this work, we present results of quantum detector tomography of superconducting single photon detector (SSPD) based on MoSi film, and compare them with previously reported data on NbN. We find that for both materials hot spot interaction length coincides with the strip width, and the dependence of single and double-spot detection efficiencies on bias current are compatible with sufficiently large hot-spot size, approaching the strip width.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1787  
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y. url  doi
openurl 
  Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
  Year 2013 Publication (down) J. Opt. Technol. Abbreviated Journal J. Opt. Technol.  
  Volume 80 Issue 7 Pages 435  
  Keywords SSPD, quantum efficiency  
  Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-9762 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1172  
Permanent link to this record
 

 
Author Klapwijk, T. M.; Semenov, A. V. url  doi
openurl 
  Title Engineering physics of superconducting hot-electron bolometer mixers Type Journal Article
  Year 2017 Publication (down) IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages 627-648  
  Keywords HEB mixers  
  Abstract Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1292  
Permanent link to this record
 

 
Author Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N. doi  openurl
  Title Characterization of MoSi superconducting single-photon detectors in the magnetic field Type Journal Article
  Year 2015 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2200504 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2015 Serial 991  
Permanent link to this record
 

 
Author Polyakova, M.; Semenov, A. V.; Kovalyuk, V.; Ferrari, S.; Pernice, W. H. P.; Gol'tsman, G. N. url  doi
openurl 
  Title Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency Type Journal Article
  Year 2019 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 29 Issue 5 Pages 1-5  
  Keywords SSPD, waveguide-integrated SNSPD, hot-spot interaction length  
  Abstract We present a simple quantum detector tomography protocol, which allows, without ambiguities, to measure the two-spot detection efficiency and extract the hot-spot interaction length of superconducting nanowire single photon detectors (SNSPDs) with unity intrinsic detection efficiency. We identify a significant parasitic contribution to the measured two-spot efficiency, related to an effect of the bias circuit, and find a way to rule out this contribution during data post-processing and directly in the experiment. From the data analysis for waveguide-integrated SNSPD, we find signatures of the saturation of the two-spot efficiency and hot-spot interaction length of order of 100 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1187  
Permanent link to this record
 

 
Author Zolotov, P. I.; Semenov, A. V.; Divochiy, A. V.; Goltsman, G. N.; Romanov, N. R.; Klapwijk, T. M. url  doi
openurl 
  Title Dependence of photon detection efficiency on normal-state sheet resistance in marginally superconducting films of NbN Type Journal Article
  Year 2021 Publication (down) IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 31 Issue 5 Pages 1-5  
  Keywords NbN SSPD, SNSPD  
  Abstract We present an extensive set of data on nanowire-type superconducting single-photon detectors based on niobium-nitride (NbN) to establish the empirical correlation between performance and the normal-state resistance per square. We focus, in particular, on the bias current, compared to the expected depairing current, needed to achieve a near-unity detection efficiency for photon detection. The data are discussed within the context of a model in which the photon energy triggers the movement of vortices i.e. superconducting dissipation, followed by thermal runaway. Since the model is based on the non-equilibrium theory for conventional superconductors deviations may occur, because the efficient regime is found when NbN acts as a marginal superconductor in which long-range phase coherence is frustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1222  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Heterodyne spectroscopy with superconducting single-photon detector Type Conference Article
  Year 2017 Publication (down) EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 132 Issue Pages 01005  
  Keywords SSPD mixer, SNSPD  
  Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1205  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: