toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Fu, K., Zannoni, R., Chan, C., Adams, S. H., Nicholson, J., Polizzi, E., et al. (2008). Terahertz detection in single wall carbon nanotubes. Appl. Phys. Lett., 92(3), 033105.
toggle visibility
Siddiqi, I., & Prober, D. E. (2004). Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection. Appl. Phys. Lett., 84(8), 1404.
toggle visibility
Santavicca, D. F., Reulet, B., Karasik, B. S., Pereverzev, S. V., Olaya, D., Gershenson, M. E., et al. (2010). Energy resolution of terahertz single-photon-sensitive bolometric detectors. Appl. Phys. Lett., 96(8), 083505-3.
toggle visibility
An, Z., Chen, J. - C., Ueda, T., Komiyama, S., & Hirakawa, K. (2005). Infrared phototransistor using capacitively coupled two-dimensional electron gas layers. Appl. Phys. Lett., 86, 172106-3.
toggle visibility
Barends, R., Hajenius, M., Gao, J. R., & Klapwijk, T. M. (2005). Current-induced vortex unbinding in bolometer mixers. Appl. Phys. Lett., 87, 263506 (1 to 3).
toggle visibility
Stevens, M., Hadfield, R., Schwall, R., Nam, S. W., Mirin, R., & Gupta, J. (2006). Fast lifetime measurements of infrared emitters using a low-jitter superconduct- ing single-photon detector. Appl. Phys. Lett., 89, 031109.
toggle visibility
Zhang, W., Khosropanah, P., Gao, J. R., Kollberg, E. L., Yngvesson, K. S., Bansal, T., et al. (2010). Quantum noise in a terahertz hot electron bolometer mixer. Appl. Phys. Lett., 96(11), 111113–(1–3).
toggle visibility
Walther, C., Scalari, G., Faist, J., Beere, H., & Ritchie, D. (2006). Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz. Appl. Phys. Lett., 89, 231121(1–3).
toggle visibility
Sekine, N., & Hosako, I. (2009). Intensity modulation of terahertz quantum cascade lasers under external light injection. Appl. Phys. Lett., 95, 201106(1–3).
toggle visibility
Baek, B., Lita, A. E., Verma, V., & Nam, S. W. (2011). Superconducting a-WxSi1–x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl. Phys. Lett., 98(25), 3.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print