toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W. url  doi
openurl 
  Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
  Year 2014 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 116 Issue 4 Pages 043906 (1 to 9)  
  Keywords NbN SSPD, SNSPD, TaN  
  Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1357  
Permanent link to this record
 

 
Author Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C. url  doi
openurl 
  Title Spectral dependency of superconducting single photon detectors Type Journal Article
  Year 2010 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 107 Issue 11 Pages 116103 (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1392  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G. url  doi
openurl 
  Title Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
  Year 2008 Publication (up) J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 1-2 Pages 591-596  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1244  
Permanent link to this record
 

 
Author de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B. url  doi
openurl 
  Title Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) Type Journal Article
  Year 2008 Publication (up) J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 3-4 Pages 771-776  
  Keywords NbN SSPD, SNSPD, nanowires  
  Abstract We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1410  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. url  doi
openurl 
  Title Ultrafast superconducting single-photon detector Type Journal Article
  Year 2009 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 15 Pages 1670-1680  
  Keywords SSPD, SNSPD  
  Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 607  
Permanent link to this record
 

 
Author Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl url  doi
openurl 
  Title Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Type Journal Article
  Year 2009 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2 Pages 364-373  
  Keywords PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency  
  Abstract A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 700  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. url  doi
openurl 
  Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
  Year 2009 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2-3 Pages 334-344  
  Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN  
  Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 701  
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R. url  doi
openurl 
  Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
  Year 2007 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 54 Issue 2-3 Pages 315-326  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1434  
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
  Year 2004 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 51 Issue 9-10 Pages 1447-1458  
  Keywords NbN SSPD, SNSPD  
  Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1488  
Permanent link to this record
 

 
Author Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V. doi  openurl
  Title Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber Type Journal Article
  Year 2015 Publication (up) J. Nanophoton. Abbreviated Journal  
  Volume 9 Issue 1 Pages 093051  
  Keywords SSPD, SNSPD  
  Abstract This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3  μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7  μm2. The improved SSPD demonstrates a record timing jitter (<25  ps), an ultrashort recovery time (<2  ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-2608 ISBN Medium  
  Area Expedition Conference  
  Notes 10.1117/1.JNP.9.093051 Approved no  
  Call Number RPLAB @ sasha @ Serial 1052  
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K. url  doi
openurl 
  Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
  Year 2019 Publication (up) J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 36 Issue 3 Pages B20  
  Keywords NbN PNR SSPD, SNSPD  
  Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1225  
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y. url  doi
openurl 
  Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
  Year 2013 Publication (up) J. Opt. Technol. Abbreviated Journal J. Opt. Technol.  
  Volume 80 Issue 7 Pages 435  
  Keywords SSPD, quantum efficiency  
  Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-9762 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1172  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 61 Issue Pages 1081-1085  
  Keywords SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
 

 
Author Feautrier, P.; le Coarer, E.; Espiau de Lamaestre, R.; Cavalier, P.; Maingault, L.; Villégier, J-C.; Frey, L.; Claudon, J.; Bergeard, N.; Tarkhov, M.; Poizat, J-P. openurl 
  Title High-speed superconducting single photon detectors for innovative astronomical applications Type Conference Article
  Year 2008 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue 1 Pages 10  
  Keywords SSPD  
  Abstract Superconducting Single Photon Detectors (SSPD) are now mature enough to provide extremely interesting detector performances in term of sensitivity, speed, and geometry in the visible and near infrared wavelengths. Taking advantage of recent results obtained in the Sinphonia project, the goal of our research is to demonstrate the feasibility of a new family of micro-spectrometers, called SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer), associated to an array of SSPD, the whole assembly being integrated on a monolithic sapphire substrate coupling the detectors array to a waveguide injecting the light. This unique association will create a major breakthrough in the domain of visible and infrared spectroscopy for all applications where the space and weight of the instrument is limited. SWIFTS is an innovative way to achieve very compact spectro-detectors using nano-detectors coupled to evanescent field of dielectric integrated optics. The system is sensitive to the interferogram inside the dielectric waveguide along the propagation path. Astronomical instruments will be the first application of such SSPD spectrometers. In this paper, we describes in details the fabrication process of our SSPD built at CEA/DRFMC using ultra-thin NbN epitaxial films deposited on different orientations of Sapphire substrates having state of the art superconducting characteristics. Electron beam lithography is routinely used for patterning the devices having line widths below 200 nm and down to 70 nm. An experimental set-up has been built and used to test these SSPD devices and evaluate their photon counting performances. Photon counting performances of our devices have been demonstrated with extremely low dark counts giving excellent signal to noise ratios. The extreme compactness of this concept is interesting for space spectroscopic applications. Some new astronomical applications of such concept are proposed in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 648  
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol'tsman, G. url  doi
openurl 
  Title New advanced generation of superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
  Year 2008 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue Pages 012307 (1 to 6)  
  Keywords PNR SSPD; SNSPD  
  Abstract We present our latest generation of ultrafast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). We have developed, fabricated and tested a multi-sectional design of NbN nanowire structures. The novel SSPD structures consist of several meander sections connected in parallel, each having a resistor connected in series. The novel SSPDs combine 10 μm × 10 μm active areas with a low kinetic inductance and PNR capability. That resulted in a significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector's response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performances of the PNR SSPDs. The PNR SSPDs are perfectly suited for fibreless free-space telecommunications, as well as for ultrafast quantum cryptography and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1245  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: