|   | 
Details
   web
Records
Author Schwaab, G.W.; Auen, K.; Bruendermann, E.; Feinaeugle, R.; Gol’tsman, G.N.; Huebers, H.-W.; Krabbe, A.; Roeser, H.-P.; Sirmain, G.
Title 2- to 6-THz heterodyne receiver array for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Type Conference Article
Year 1998 Publication (down) Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3357 Issue Pages 85-96
Keywords NbN HEB mixers, applications, stratospheric observatory, airborne
Abstract The Institute of Space Sensor Technology of the German Aerospace Center (DLR) is developing a heterodyne array receiver for the frequency range 2 to 6 THz for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Key science issues in that frequency range are the observation of lines of atoms [e.g. (OI)], ions [e.g. (CII), (NII)], and molecules (e.g. OH, HD, CO) with high spectral resolution to study the dynamics and evolution of galactic and extragalactic objects. Long term goal is the development of an integrated array heterodyne receiver with superconducting hot electron bolometric (HEB) mixers and p-type Ge or Si lasers as local oscillators. The first generation receiver will be composed of HEB mixers in a 2 pixel 2 polarization array which will be pumped by a gas laser local oscillator. Improved Schottky diode mixers are the backup solution for the HEBs. The state of the art of HEB mixer and p-type Ge laser technology are described as well as possible improvements in the ’conventional’ optically pumped far-infrared laser and Schottky diode mixer technology. Finally, the frequency coverage of the first generation heterodyne receiver for some important astronomical transitions is discussed. The expected sensitivity is compared to line fluxes measured by the ISO satellite.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Advanced Technology MMW, Radio, and Terahertz Telescopes
Notes Approved no
Call Number Serial 1583
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Gol’tsman, G. N.; Smirnov, K.
Title Superconducting quantum detector for astronomy and X-ray spectroscopy Type Conference Article
Year 2002 Publication (down) Proc. Int. Workshop on Supercond. Nano-Electronics Devices Abbreviated Journal Proc. Int. Workshop on Supercond. Nano-Electronics Devices
Volume Issue Pages 201-210
Keywords NbN SSPD, SNSPD, SQD, superconducting quantum detectors, X-ray spectroscopy
Abstract We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.
Address Naples, Italy
Corporate Author Thesis
Publisher Springer Place of Publication Boston, MA Editor Pekola, J.; Ruggiero, B.; Silvestrini, P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4615-0737-6 Medium
Area Expedition Conference International Workshop on Superconducting Nano-Electronics Devices, May 28-June 1, 2001
Notes Approved no
Call Number semenov2002superconducting Serial 1525
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication (down) Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop
Volume Issue Pages
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address Monterey, CA, USA
Corporate Author Thesis
Publisher Place of Publication Editor Wold, J.; Davidson, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no
Call Number Serial 1829
Permanent link to this record
 

 
Author Palermo, C.; Varani, L.; Vaissière, J.-C.; Millithaler, J.-F.; Starikov, E.; Shiktorov, P.; Gruzinskis, V.; Azaïs, B.
Title Monte Carlo calculation of diffusion coefficient, noise spectral density and noise temperature in HgCdTe Type Conference Article
Year 2005 Publication (down) Proc. AIP Conf. Abbreviated Journal
Volume 780 Issue Pages 151-154
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 460
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene
Title First light with an 800 GHz phonon-cooled HEB mixer receiver Type Conference Article
Year 1998 Publication (down) Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 35-43
Keywords HEB, mixer, LO power, local oscillator power, saturation effect, dynamic range
Abstract Phonon-cooled superconductive hot-electron bolometric (HEB) mixers are incorporated in a waveguide receiver designed to operate near 800 Gliz. The mixer elements are thin-film nio- bium nitride microbridges with dimensions of 4 nm thickness, 0.2 to 0.3 p.m in length and 2 jun in width. At 780 GHz the best receiver noise temperature is 840 K (DSB). The mixer IF bandwidth is 2.0 GHz, the absorbed LO power is —0.1 1.1W. A fixed-tuned version of the re- ceiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, Arizona, to conduct astronomical observations. These observations represent the first time that a receiver incorporating any superconducting HEB mixer has been used to detect a spectral line of celes- tial origin.
Address
Corporate Author Thesis
Publisher Place of Publication Pasadena, California, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 572
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
Year 1997 Publication (down) Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 23-28
Keywords waveguide NbN HEB mixers
Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 275
Permanent link to this record
 

 
Author Kerr, A. R.; Feldman, M. J.; Pan, S.-K.
Title Receiver noise temperature, the quantum noise limit, and zero–point fluctuations Type Conference Article
Year 1997 Publication (down) Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 101-111
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 277
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, Alexei; Schubert, Josef; Gol'tsman, Gregory; Voronov, Boris; Gershenzon, Evgeni
Title Performance of the phonon-cooled hot-electron bolometric mixer between 0.7 THz and 5.2 THz Type Conference Article
Year 2000 Publication (down) Proc. 8-th Int. Conf. on Terahertz Electronics Abbreviated Journal Proc. 8-th Int. Conf. on Terahertz Electronics
Volume Issue Pages 117-119
Keywords NbN HEB mixers
Abstract We report on the phonon cooled NbN hot electron bolometer as mixer in the terahertz frequency range. Its hybrid antenna consists of a hyperhemispheric silicon lens and a logarithmic-spiral feed antenna. Noise temperatures have been measured between 0.7 THz and 5.2 THz. A quarter wavelength layer of Parylene works as antireflection coating for the silicon lens and reduces the noise temperature by about 30. It was found that the antenna pattern at 2.5 THz is determined by the feed antenna and not by the diameter of the lens.
Address Darmstadt, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Terahertz Electronics [8th], Held inDarmstadt, Germany on 28-29 September 2000
Notes Approved no
Call Number Serial 1553
Permanent link to this record
 

 
Author Hesler, J. L.; Hall, W. R.; Crowe, T. W.; Weikle, R. M.; Bradley, R. F.; Pan, Shing-Kuo
Title Submm wavelenght waveguide mixers using planar Schottky barier diods Type Conference Article
Year 1996 Publication (down) Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 462
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 270
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B.
Title Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
Year 1996 Publication (down) Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 331-336
Keywords NbN HEB mixers
Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 945
Permanent link to this record