|   | 
Details
   web
Records
Author Klapwijk, T. M.; Semenov, A. V.
Title Engineering physics of superconducting hot-electron bolometer mixers Type Journal Article
Year 2017 Publication (up) IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 7 Issue 6 Pages 627-648
Keywords HEB mixers
Abstract Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1292
Permanent link to this record
 

 
Author Finkel, M.; Thierschmann, H.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M.
Title Performance of THz components based on microstrip PECVD SiNx technology Type Journal Article
Year 2017 Publication (up) IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 7 Issue 6 Pages 765-771
Keywords transmission line measurements, power transmission lines, dielectrics, couplers, submillimeter wave circuits, coplanar waveguides, micromechanical devices
Abstract We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic transmission line characterizations. We obtain losses of 9 dB/mm at 300 GHz. Branchline hybrid couplers are realized that exhibit 2.5-dB insertion loss, 1-dB amplitude imbalance, and -26-dB isolation, in agreement with simulations. We use the measured center frequency to determine the dielectric constant of the PECVD SiN x , which yields 5.9. We estimate the wafer-to-wafer variations to be of the order of 1%. Directional couplers are presented which exhibit -12-dB transmission to the coupled port and -26 dB to the isolated port. For transmission lines with 5-μm-thin silicon nitride (SiN x ), we observe losses below 4 dB/mm. The thin SiN x dielectric membrane makes the THz components compatible with scanning probe microscopy cantilevers allowing the application of this technology in on-chip circuits of a THz near-field microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1294
Permanent link to this record
 

 
Author Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Zolotov, P. I.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.
Title Influence of deposited material energy on superconducting properties of the WSi films Type Conference Article
Year 2020 Publication (up) IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.
Volume 781 Issue Pages 012013 (1 to 6)
Keywords WSi SSPD, SNSPD
Abstract WSi thin films have the advantages for creating SNSPDs with a large active area or array of detectors on a single substrate due to the amorphous structure. The superconducting properties of ultrathin WSi films substantially depends on their structure and thickness as the NbN films. Scientific groups investigating WSi films mainly focused only on changes of their thickness and the ratio of the components on the substrate at room temperature. This paper presents experiments to determine the effect of the bias potential on the substrate, the temperature of the substrate, and the peak power of pulsed magnetron sputtering, which is the equivalent of ionization, a tungsten target, on the surface resistance and superconducting properties of the WSi ultrathin films. The negative effect of the substrate temperature and the positive effect of the bias potential and the ionization coefficient (peak current) allow one to choose the best WSi films formation mode for SNSPD: substrate temperature 297 K, bias potential -60 V, and peak current 3.5 A.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1757-899X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1798
Permanent link to this record
 

 
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K.
Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
Year 2020 Publication (up) IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.
Volume 781 Issue Pages 012011 (1 to 5)
Keywords WSi, NbN SSPD, SNSPD
Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1757-899X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1799
Permanent link to this record
 

 
Author Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V.
Title Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber Type Journal Article
Year 2015 Publication (up) J. Nanophoton. Abbreviated Journal
Volume 9 Issue 1 Pages 093051
Keywords SSPD, SNSPD
Abstract This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3  μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7  μm2. The improved SSPD demonstrates a record timing jitter (<25  ps), an ultrashort recovery time (<2  ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-2608 ISBN Medium
Area Expedition Conference
Notes 10.1117/1.JNP.9.093051 Approved no
Call Number RPLAB @ sasha @ Serial 1052
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K.
Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
Year 2019 Publication (up) J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B
Volume 36 Issue 3 Pages B20
Keywords NbN PNR SSPD, SNSPD
Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0740-3224 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1225
Permanent link to this record
 

 
Author Feautrier, P.; le Coarer, E.; Espiau de Lamaestre, R.; Cavalier, P.; Maingault, L.; Villégier, J-C.; Frey, L.; Claudon, J.; Bergeard, N.; Tarkhov, M.; Poizat, J-P.
Title High-speed superconducting single photon detectors for innovative astronomical applications Type Conference Article
Year 2008 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue 1 Pages 10
Keywords SSPD
Abstract Superconducting Single Photon Detectors (SSPD) are now mature enough to provide extremely interesting detector performances in term of sensitivity, speed, and geometry in the visible and near infrared wavelengths. Taking advantage of recent results obtained in the Sinphonia project, the goal of our research is to demonstrate the feasibility of a new family of micro-spectrometers, called SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer), associated to an array of SSPD, the whole assembly being integrated on a monolithic sapphire substrate coupling the detectors array to a waveguide injecting the light. This unique association will create a major breakthrough in the domain of visible and infrared spectroscopy for all applications where the space and weight of the instrument is limited. SWIFTS is an innovative way to achieve very compact spectro-detectors using nano-detectors coupled to evanescent field of dielectric integrated optics. The system is sensitive to the interferogram inside the dielectric waveguide along the propagation path. Astronomical instruments will be the first application of such SSPD spectrometers. In this paper, we describes in details the fabrication process of our SSPD built at CEA/DRFMC using ultra-thin NbN epitaxial films deposited on different orientations of Sapphire substrates having state of the art superconducting characteristics. Electron beam lithography is routinely used for patterning the devices having line widths below 200 nm and down to 70 nm. An experimental set-up has been built and used to test these SSPD devices and evaluate their photon counting performances. Photon counting performances of our devices have been demonstrated with extremely low dark counts giving excellent signal to noise ratios. The extreme compactness of this concept is interesting for space spectroscopic applications. Some new astronomical applications of such concept are proposed in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 648
Permanent link to this record
 

 
Author Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V.
Title Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
Year 2016 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 737 Issue Pages 012032
Keywords WSi SSPD, SNSPD, NEP
Abstract We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1235
Permanent link to this record
 

 
Author Moshkova, M.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.
Title Large active area superconducting single photon detector Type Conference Article
Year 2019 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012139
Keywords SSPD, SNSPD
Abstract We present development of large active area superconducting single-photon detectors well coupled with standard 50 μm-core multi-mode fiber. The sensitive area of the SSPD is patterned using the photon-number-resolving design and occupies an area of 40×40 μm2. Using this approach, we have obtained excellent specifications: system detection efficiency of 47% measured using a 900 nm laser and low dark count rate of 100 cps. The main advantages of the approach presented are a very short dead time of the detector of 22 ns and FWHM jitter value of about 130 ps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1224
Permanent link to this record
 

 
Author Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Lubenchenko, A. V.; Morozov, P. V.; Shurkaeva, I. V.; Smirnov, K. V.
Title Influence of sputtering parameters on the main characteristics of ultra-thin vanadium nitride films Type Conference Article
Year 2018 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051030
Keywords SSPD, SNSPD, VN
Abstract We researched the relation between deposition and ultra-thin VN films parameters. To conduct the experimental study we varied substrate temperature, Ar and N2 partial pressures and deposition rate. The study allowed us to obtain the films with close to the bulk values transition temperatures and implement such samples in order to fabricate superconducting single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1228
Permanent link to this record