toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ozhegov, R. V.; Okunev, O. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. url  doi
openurl 
  Title Noise equivalent temperature difference of a superconducting integrated terahertz receiver Type Journal Article
  Year 2009 Publication (up) J. Commun. Technol. Electron. Abbreviated Journal J. Commun. Technol. Electron.  
  Volume 54 Issue 6 Pages 716-720  
  Keywords SIS mixer SIR NETD, FFO, harmonic mixer  
  Abstract The dependence of the noise equivalent temperature difference (NETD) of a superconducting integrated receiver (SIR) on the receiver noise temperature and the inputsignal level has been investigated. An unprecedented NETD of 13±2 mK has been measured at a SIR noise temperature of 200 K, intermediate-frequency bandwidth of 4 GHz, and time constant of 1 s. With a decrease in the input signal, an improvement in the NETD is observed. This effect is explained by a reduction in the influence of the instabilities of the receiver power supply and the amplification circuit that occur when the input signal is decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1400  
Permanent link to this record
 

 
Author Nikogosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V. url  doi
openurl 
  Title Effect of absorption on the efficiency of terahertz radiation generation in the metal waveguide partially filled with nonlinear crystal LiNbO3, DAST or ZnTe Type Journal Article
  Year 2019 Publication (up) J. Contemp. Phys. Abbreviated Journal J. Contemp. Phys.  
  Volume 54 Issue 1 Pages 97-104  
  Keywords nonlinear crystal, THz, waveguide  
  Abstract The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-3372 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1289  
Permanent link to this record
 

 
Author de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B. url  doi
openurl 
  Title Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) Type Journal Article
  Year 2008 Publication (up) J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 3-4 Pages 771-776  
  Keywords NbN SSPD, SNSPD, nanowires  
  Abstract We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1410  
Permanent link to this record
 

 
Author Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl url  doi
openurl 
  Title Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Type Journal Article
  Year 2009 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2 Pages 364-373  
  Keywords PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency  
  Abstract A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 700  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. url  doi
openurl 
  Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
  Year 2009 Publication (up) J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume 56 Issue 2-3 Pages 334-344  
  Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN  
  Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 701  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: