|   | 
Details
   web
Records
Author Trifonov, Andrey; Tong, C. Edward; Lobanov, Yury; Kaurova, Natalia; Blundell, Raymond; Gol’tsman, Gregory
Title An investigation of the DC and IF performance of silicon-membrane HEB mixer elements Type Conference Article
Year 2015 Publication (up) Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 40
Keywords silicon-membrane HEB waveguide mixer
Abstract We report on our initial development towards a 2x2 multi-pixel HEB waveguide mixer for operation at 1.4 THz. We have successfully fabricated devices comprising an NbN bridge integrated with antenna test structure using a silicon membrane as the supporting substrate. DC measurements of the test chips demonstrate critical current from 0.1 – 1mA depending on the size of device, with T c of around 10 K and ΔTc ~ 0.8 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1160
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Gap frequency and photon absorption in a hot electron bolometer Type Conference Article
Year 2016 Publication (up) Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 121
Keywords NbN HEB; Si membrane
Abstract The superconducting energy gap is a crucial parameter of a superconductor when used in mixing applications. In the case of the SIS mixer, the mixing process is efficient for frequencies below the energy gap, whereas, in the case of the HEB mixer, the mixing process is most efficient at frequencies above the gap, where photon absorption takes place more readily. We have investigated the photon absorption phenomenon around the gap frequency of HEB mixers based on NbN films deposited on silicon membranes. Apart from studying the pumped I-V curves of HEB devices, we have also probed them with microwave radiation, as previously described [1]. At frequencies far below the gap frequency, the pumped I-V curves show abrupt switching between the superconducting and resistive states. For the NbN HEB mixers we tested, which have critical temperatures of ~9 K, this is true for frequencies below about 400 GHz. As the pump frequency is increased beyond 400 GHz, the resistive state extends towards zero bias and at some point a small region of negative differential resistance appears close to zero bias. In this region, the microwave probe reveals that the device impedance is changing randomly with time. As the pump frequency is further increased, this random impedance change develops into relaxation oscillations, which can be observed by the demodulation of the reflected microwave probe. Initially, these oscillations take the form of several frequencies grouped together under an envelope. As we approach the gap frequency, the multiple frequency relaxation oscillations coalesce into a single frequency of a few MHz. The resultant square-wave nature of the oscillation is a clear indication that the device is in a bi-stable state, switching between the superconducting and normal state. Above the gap frequency, it is possible to obtain a pumped I-V curve with no negative differential resistance above a threshold pumping level. Below this pumping level, the device demonstrates bi-stability, and regular relaxation oscillation at a few MHz is observed as a function of pump power. The threshold pumping level is clearly related to the amount of power absorbed by the device and its phonon cooling. From the above experiment, we can derive the gap frequency of the NbN film, which is 585 GHz for our 6 μm thin silicon membrane-based device. We also confirm that the HEB mixer is not an efficient photon absorber for radiation below the gap frequency. 1. A. Trifonov et al., “Probing the stability of HEB mixers with microwave injection”, IEEE Trans. Appl. Supercond., vol. 25, no. 3, June 2015.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1204
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M.
Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
Year 1998 Publication (up) Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 18-20
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.
Address Leeds, UK
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-4903-2 Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1581
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
Year 1995 Publication (up) Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 254-261
Keywords NbN HEB mixers
Abstract We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1626
Permanent link to this record
 

 
Author Tong, C. Y. E.; Blundell, R.; Bumble, B.; Stern, J. A.; LeDuc, H. G.
Title Sub-Millimeter distributed quasiparticle receiver employing a non-Linear transmission line Type Conference Article
Year 1996 Publication (up) Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 47
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 271
Permanent link to this record