|   | 
Details
   web
Records
Author Gol'tsman, G.; Korneev, A.; Minaeva, O.; Antipov, A.; Divochiy, A.; Kaurova, N.; Voronov, B.; Pan, D.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Sobolewski, R.
Title Middle-infrared to visible-light ultrafast superconducting single-photon detector Type Conference Article
Year 2006 Publication (down) Proc. ASC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Seattle Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ SSPD_cavity_ASC Serial 389
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.
Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
Year 2007 Publication (down) Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume 52 Issue 1 Pages L9.00013
Keywords
Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1027
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Sobolewski, Roman; Minaeva, O.; Kaurova, N.; Korneev, A.; Voronov, B.; Milostnaya, I.; Gol'Tsman, Gregory
Title Nanosecond, transient resistive state in two-dimensional superconducting stripes Type Abstract
Year 2006 Publication (down) Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume Issue Pages H38.13
Keywords NbN stripes
Abstract We have observed, nanosecond-in-duration, transient voltage pulses, generated across two-dimensional (2-D) NbN stripes (width: 100--500 nm; thickness: 3.5--10 nm) of various lengths (1--500 μm), when the wires were completely isolated from the outside world, biased at currents close to the critical current, and kept at temperatures below the mean-field critical temperature Tco. In 2-D superconducting films, at temperatures below the Kosterlitz-Thouless transition, all vortices are bound and the resistance is zero. However, these vortices can get unbound when a large enough transport current is applied. The latter results in a transient resistive state, which manifests itself as spontaneous, 2.5--8-ns-long voltage pulses with the amplitude corresponding to the unbinding potential of a vortex pair. In our 100-nm-wide stripes, we have also observed the formation of phase slip centers (PSCs) at temperatures close to Tco, and a mixture of PSCs and unbound vortex-antivortex pairs at low temperatures.
Address Baltimore, MD
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1454
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
Year 1998 Publication (down) Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 105-114
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1587
Permanent link to this record
 

 
Author Svechnikov, S.; Verevkin, A.; Voronov, B.; Menschikov, E.; Gershenzon, E.; Gol'tsman, G.
Title Quasioptical phonon-cooled NbN hot electron bolometer mixers at 0.5-1.1 THz Type Conference Article
Year 1998 Publication (down) Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 45-51
Keywords NbN HEB mixers
Abstract The noise performance of a receiver incorporating spiral antenna coupled NbN phonon-cooled superconducting hot electron bolometric mixer is measured from 450 GHz to 1200 GHz. The mixer element is thin (thickness nm) NbN 1.5 pm wide and 0.2 i.um long film fabricated by lift-off e-beam lithography on high-resistive silicon substrate. The noise of the receiver temperature is 1000 K at 800-900 GHz, 1200 K at 950 GHz, and 1600 K at 1.08 THz. The required (absorbed) local-oscillator power is —20 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1586
Permanent link to this record