toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lang, P. T.; Knott, W. J.; Leipold, I.; Renk, K. F.; Semenov, A. D.; Gol'tsman, G. N. url  doi
openurl 
  Title Generation and detection of tunable ultrashort infrared and far-infrared radiation pulses of high intensity Type Journal Article
  Year 1992 Publication (up) Int. J. of Infrared and Millimeter Waves Abbreviated Journal Int. J. of Infrared and Millimeter Waves  
  Volume 13 Issue 3 Pages 373-380  
  Keywords CO2 IR lasers, FIR  
  Abstract We report on generation and detection of intense pulsed radiation with frequency tunability in the infrared and far-infrared spectral regions. Infrared radiation is generated with a transversally electrically excited high pressure CO2 laser. A laser pulse of a total duration of about 300 ns consisted, due to self mode locking, of a series of single pulses, some with pulse durations of less than 450 ps and peak powers larger than 20 MW. Using these pulses for optical with durations less than 400 ps were obtained. For detection a new ultrafast superconducting detector was used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0195-9271 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1671  
Permanent link to this record
 

 
Author Gousev, Yu. P.; Gol'tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.; Nebosis, R. S.; Heusinger, M. A.; Renk, K. F. doi  openurl
  Title Broadband ultrafast superconducting NbN detector for electromagnetic radiation Type Journal Article
  Year 1994 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 75 Issue 7 Pages 3695-3697  
  Keywords NbN HEB  
  Abstract An ultrafast detector that is sensitive to radiation in a broad spectral range from submillimeter waves to visible light is reported. It consists of a structured NbN thin film cooled to a temperature below Tc (∼11 K). Using 20 ps pulses of a GaAs laser, we observed signal pulses with both rise and decay time of about 50 ps. From the analysis of a mixing experiment with submillimeter radiation we estimate an intrinsic response time of the detector of ∼12 ps. The sensitivity was found to be similar for the near‐infrared and submillimeter radiation. Broadband sensitivity and short response time are attributed to a quasiparticle heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 252  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages 6758-6767  
  Keywords HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 306  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W. url  doi
openurl 
  Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
  Year 2014 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 116 Issue 4 Pages 043906 (1 to 9)  
  Keywords NbN SSPD, SNSPD, TaN  
  Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1357  
Permanent link to this record
 

 
Author Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C. url  doi
openurl 
  Title Spectral dependency of superconducting single photon detectors Type Journal Article
  Year 2010 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 107 Issue 11 Pages 116103 (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1392  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N. url  doi
openurl 
  Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
  Year 2000 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 87 Issue 1 Pages 502-510  
  Keywords NbN HEB mixers, nonthermal  
  Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1558  
Permanent link to this record
 

 
Author Nebosis, R. S.; Steinke, R.; Lang, P. T.; Schatz, W.; Heusinger, M. A.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Picosecond YBa2Cu3O7−δdetector for far‐infrared radiation Type Journal Article
  Year 1992 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 72 Issue 11 Pages 5496-5499  
  Keywords YBCO HTS detectors  
  Abstract We report on a picosecond YBa2Cu3O7−δ detector for far‐infrared radiation. The detector, consisting of a current carrying structure cooled to liquid‐nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far‐infrared laser in the frequency range from 25 to 215 cm−1. We found that the sensitivity (1 mV/W) was almost constant in this frequency range. We estimated a noise equivalent power of less than 5×10−7 W Hz−1/2. Taking into account the results of a mixing experiment (in the frequency range from 4 to 30 cm−1) we suggest that the response time of the detector was few picoseconds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1668  
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y. url  doi
openurl 
  Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
  Year 2013 Publication (up) J. Opt. Technol. Abbreviated Journal J. Opt. Technol.  
  Volume 80 Issue 7 Pages 435  
  Keywords SSPD, quantum efficiency  
  Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-9762 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1172  
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Y.; Shcherbatenko, M.; Korneev, A.; Pernice, W.; Goltsman, G. doi  openurl
  Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type Conference Article
  Year 2017 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 917 Issue Pages 062032  
  Keywords SSPD, SNSPD, waveguide  
  Abstract With use of the travelling-wave geometry approach, integrated superconductor- nanophotonic devices based on silicon nitride nanophotonic waveguide with a superconducting NbN-nanowire suited on top of the waveguide were fabricated. NbN-nanowire was operated as a single-photon counting detector with up to 92 % on-chip detection efficiency in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 106 in C-band at 1550 nm wavelength  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1140  
Permanent link to this record
 

 
Author Polyakova, M. I.; Florya, I. N.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Extracting hot-spot correlation length from SNSPD tomography data Type Conference Article
  Year 2019 Publication (up) J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012166 (1 to 4)  
  Keywords SSPD, SNSPD, quantum detector tomography, QDT  
  Abstract We present data of quantum detector tomography for the samples specifically optimized for this problem. Using this method, we take results of hot-spot correlation length of 17 ± 2 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1273  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: